
1

XINS User Guide
Anthony Goubard <anthony.goubard@japplis.com>

Table of Contents
Introduction ... 3

What is XINS? .. 3
Notation .. 3
Requirements ... 3
Installation .. 4
Code conventions ... 4

Setting up a new project .. 5
xins-project.xml .. 5
api.xml ... 5
MyFunction.fnc .. 6

Compiling and running the project .. 6
The HTML specification documentation ... 7
The web application. ... 7
The server-side Javadoc ... 10
The client API ... 10
The client-side Javadoc .. 11
The Open Document Format ... 11

Implementing the method ... 12
Defining Input, Output. .. 12
Defining the test environments. ... 13
Defining the examples. .. 13
Implementing your function. ... 14
Executing your function ... 14

The error code ... 15
The runtime properties ... 16

The properties .. 17
Getting properties value ... 18
Defining properties ... 19

The bootstrap properties ... 20
Integration with CVS / Subversion ... 21
Managing dependencies ... 21
Adding other files to the WAR file .. 22
Multiple implementations and stubs ... 23
Testing .. 23
Categories ... 24
Managing logs .. 25

Managing the logs on the server side. ... 25
Adding your own logs. .. 26
Configuring the properties files for specific logs ... 27

Managing load balancing and fail over ... 28
XINS types .. 29

Predefined types. .. 29
Defined types ... 30
Shared types .. 30

Grouping types ... 31

XINS User Guide

2

Param combos .. 31
Attribute combos .. 32
Combos based on values .. 32

The data section. .. 33
The specification .. 33
The implementation ... 35
The result .. 35
Data section for the input ... 36
Data section on the client side .. 36

Function accesses ... 37
ACLs .. 37
Enable/Disable a function ... 39
HTTPS .. 39

The meta functions ... 39
Management .. 40

JMX ... 40
Versioning ... 41

Shared instance .. 41
Calling Convention ... 42

How to define the calling convention ... 42
Standard calling convention .. 42
XSLT calling convention ... 43
SOAP calling convention ... 43
XML calling convention .. 44
XML-RPC calling convention ... 44
JSON-RPC calling convention .. 44
JSON calling convention .. 45
SOAP-MAP calling convention ... 45
Custom calling convention ... 46
Examples calling convention ... 46

Utility classes ... 47
Ant tasks ... 48

callxins task ... 48
xins task .. 48

XINS targets .. 49
XINS tools .. 50
Performances ... 54
Content of the XINS package ... 54

Documentation ... 54
Examples ... 55
Program .. 56

Integration with IDE ... 56
Integration with Eclipse. .. 56
Integration with NetBeans .. 58

Integration with other frameworks ... 59
Spring framework ... 59
Dojo toolkit ... 59
Google Web Toolkit (GWT) ... 59
AJAX ... 60
Mule ... 60
ESB and JavaEE ... 60
Ant ... 60
Maven .. 60
Script languages (Groovy, Ruby, PHP, Perl...) ... 61

XINS User Guide

3

Google App Engine (work in progress) ... 61

Introduction
This document explains the XINS functionalities. It starts by explaining how to create and run a simple
API and continue by explaining the more advanced features.

What is XINS?
XINS is an open-source Web Services framework.

XINS supports POX-RPC, SOAP, XML-RPC and more. It consists mainly of an XML-based specification
format and a Java-based implementation framework. From its specifications, XINS can generate HTML,
WSDL, client-side code, server-side code, test forms and more.

Notation
This document uses the Windows file system. If you are installing XINS in a Unix operating system like
Mac OS X, linux or Solaris, change all back slash characters ('\') with a forward slash character ('/') in the
file names of this document.

The documentation provides some Javadoc links that only work in the HTML generated user guide.

Requirements
XINS requires the following software:

• Java Development Kit 1.5 or higher: http://www.oracle.com/technetwork/java/javase/overview/
index.html.

If not done by the installation, you should set the environment variable JAVA_HOME to the directory
where you have installed Java. Also add the %JAVA_HOME%\bin directory to the PATH environment
variable. You can check the Java version installed by executing java -version.

If you want to use XINS with Java 1.3.1 or Java 1.4, you can download XINS 2.3.

XINS has been tested with Java 5.0, Java 6.0 and java 7.0.

• Ant: http://ant.apache.org/, version 1.6.2 or higher.

You should set the environment variable ANT_HOME to the directory where you have installed Ant.
Also add the %ANT_HOME%\bin directory to the PATH environment variable. You can check the Ant
version installed by executing ant -version.

Caution

If you have a putDocumentInCache error message in Eclipse, you may need to copy
xercesImpl-2.6.2.jar [http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/xercesImpl/2.6.2/
xercesImpl-2.6.2.jar] in the eclipse\plugins\org.apache.ant_1.6.5\lib
directory.

If you're using the Ant distribution included with NetBeans and have putDocumentInCache
error messages, you should change the Ant home location to Ant 1.7.0 or higher (in Tools -
> Options -> Miscalleneous -> Ant.

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://ant.apache.org/
http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/xercesImpl/2.6.2/xercesImpl-2.6.2.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/xercesImpl/2.6.2/xercesImpl-2.6.2.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/xercesImpl/2.6.2/xercesImpl-2.6.2.jar

XINS User Guide

4

• Optional: A servlet container. For example: Tomcat [http://tomcat.apache.org/] or Jetty [http://
jetty.codehaus.org/jetty/index.html]. Any J2EE server can also deploy web applications. For
example: Glassfish [https://glassfish.dev.java.net/], Orion [http://www.orionserver.com/], JBoss [http://
www.jboss.org/], WebSphere [http://www.ibm.com/software/info1/websphere/index.jsp], WebLogic
[http://www.bea.com/products/weblogic/server/index.shtml], Resin [http://www.caucho.com/resin/] or
JRun [http://www.macromedia.com/software/jrun/?promoid=home_prod_jr_100803].

For the installation of the servlet container, please refer to the documentation of the downloaded product.

XINS contains it's own servlet container implementation for basic testing purposes only.

• Optional: A version control system. For example CVS [http://www.cvshome.org/] or Subversion [http://
subversion.tigris.org/].

This document will assume that you have installed Java and Ant.

Installation
XINS can be installed using the Windows installer or by downloading the .tgz file and unzipping the
file. Both options are explained below.

Windows Installer

• Download xins-3.0.exe [http://prdownloads.sourceforge.net/xins/xins-3.0.exe?download] and execute
it. A new directory c:\Program Files\xins is created.

• If you choose to compile and run the demo, you can go to the link provided in the README file, then
click on MyFunction and on the MyComputer links in the examples section or use the test form
link provided on this page.

Using the .tgz file

• Download XINS 3.0 [http://prdownloads.sourceforge.net/xins/xins-3.0.tgz?download].

• Unpack the downloaded file (xins-3.0.tgz) to a directory.

• Set the environment variable XINS_HOME to the xins directory.

• Add the path %XINS_HOME%\bin to your PATH environment variable

Note

On Windows, the new environment variable will not be set until you have rebooted or logged
on again. If you don't want to reboot your computer, you can set the variables with set
XINS_HOME=c:\Program Files\xins and set PATH=%PATH%;%XINS_HOME%\bin in
a DOS prompt.

You are now ready to create your first XINS project.

Code conventions
API names should be in lowercase. E.g. billing (and not Billing).

Functions, types and result codes should use the hungarian naming convention and start with an uppercase.
E.g CheckStatus, Customer and NotFound.

http://tomcat.apache.org/
http://tomcat.apache.org/
http://jetty.codehaus.org/jetty/index.html
http://jetty.codehaus.org/jetty/index.html
http://jetty.codehaus.org/jetty/index.html
https://glassfish.dev.java.net/
https://glassfish.dev.java.net/
http://www.orionserver.com/
http://www.orionserver.com/
http://www.jboss.org/
http://www.jboss.org/
http://www.jboss.org/
http://www.ibm.com/software/info1/websphere/index.jsp
http://www.ibm.com/software/info1/websphere/index.jsp
http://www.bea.com/products/weblogic/server/index.shtml
http://www.bea.com/products/weblogic/server/index.shtml
http://www.caucho.com/resin/
http://www.caucho.com/resin/
http://www.macromedia.com/software/jrun/?promoid=home_prod_jr_100803
http://www.macromedia.com/software/jrun/?promoid=home_prod_jr_100803
http://www.cvshome.org/
http://www.cvshome.org/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://prdownloads.sourceforge.net/xins/xins-3.0.exe?download
http://prdownloads.sourceforge.net/xins/xins-3.0.exe?download
http://prdownloads.sourceforge.net/xins/xins-3.0.tgz?download
http://prdownloads.sourceforge.net/xins/xins-3.0.tgz?download

XINS User Guide

5

Parameters, functions, types and result codes starting with an underscore ('_') are reserved for XINS.

Parameter names should start with a lowercase. E.g: message and houseNumber.

The Java code used for the generated templates and in the examples has private variables starting with
underscore ('_') and contains some comment for the CVS tags. For the rest the Sun Java code conventions
and the Javadoc documentation style rules apply.

Setting up a new project
To create a minimal project with one API containing one function, you need 3 files :

• xins-project.xml : This file contains the names and properties of the different APIs.

• api.xml : This file contains the declaration of the functions, types and result codes used in your project.

• <function name>.fnc : This file contains the input parameters, the output parameters, the result
codes and some examples of your function.

xins-project.xml
• Create a new directory where your APIs based on XINS will be created. For example c:\projects.

• Create a new xins-project.xml file in this directory with the content :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE project PUBLIC "-//XINS//DTD XINS Project 3.0//EN"
 "http://www.xins.org/dtd/xins-project_3_0.dtd">
<project name="myprojects"
 rcsversion="$Revision: 1.102 $" rcsdate="$Date: 2013/01/02 17:28:58 $"
 domain="com.mycompany">
</project>

api.xml
To create a new api.xml execute in the projects directory xins create-api.

The command will ask you for the name and the description of your api. The script will then create a new
api.xml file in the directory apis\<api name>\spec with the content :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE api PUBLIC "-//XINS//DTD XINS API 3.0//EN"
 "http://www.xins.org/dtd/api_3_0.dtd">

<api name="myproject" rcsversion="$Revision: 1.102 $" rcsdate="$Date: 2013/01/02 17:28:58 $">

 <description>Description of the API.</description>

</api>

Then the command will ask you if you want to create an implementation of the api. This will create the
skeleton java file where you will write the code of your function. If you answer yes, a new file impl.xml
is created in the apis\<api name>\impl directory with the content:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE impl PUBLIC "-//XINS//DTD Implementation 3.0//EN"

XINS User Guide

6

 "http://www.xins.org/dtd/impl_3_0.dtd">

<impl>
</impl>

Finally the command will ask you if you want to define some environments with your api. If you answer
yes, a new file environments.xml is created in the apis\<api name> directory with the content:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE environments PUBLIC "-//XINS//DTD Environments 3.0//EN"
 "http://www.xins.org/dtd/environments_3_0.dtd">

<environments>

 <environment id="localhost" url="http://127.0.0.1:8080/myproject/" />

</environments>

Note

In this guide we will use the xins command to create the different files of the project, but it is
also possible to do it manually using a text editor.

If you created the file manually, add the line <api name="myproject"/> in the xins-
project.xml file. If the API has an implementation, add the element <impl/> in the <api> element
and if it defines some environments add <environments/> in <api>.

MyFunction.fnc
Now that you've created the API definition, we need to define a function within this API.

To create a new function execute xins create-function.

The command will ask you for the name of your api and the name and the description of your function.
The script will then create a new <function name>.fnc file in the directory apis/<api name>/
spec with the content :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE function PUBLIC "-//XINS//DTD Function 3.0//EN"
 "http://www.xins.org/dtd/function_3_0.dtd">

<function name="MyFunction" rcsversion="$Revision: 1.102 $" rcsdate="$Date: 2013/01/02 17:28:58 $">

 <description>Description of the function.</description>

</function>

If the file was created without calling the create-function target, add the line <function
name="MyFunction"/> in the api.xml file.

Compiling and running the project
Now we have a simple project with a function that, for the moment, does nothing.

From the specification files XINS can generate :

XINS User Guide

7

• Specification documentation.

The specification documentation is a set of static HTML pages containing the description of your
specification. It lists all APIs, functions, types and error codes. The pages also provide an easy way to
call your function using the web application.

• A web application.

The web application is packaged as a WAR file that you can deploy in any servlet container. Once the
WAR file is deployed, you can access your API through HTTP.

• The client-side API.

The client API is a JAR file that can be used to invoke remotely the API functions from Java programs.
It features various advanced features, such as load-balancing, fail-over, extensive logging, etc...

• The Javadoc.

The Javadoc contains the definition of the API for the Java classes, including the generated classes. The
javadoc can be generated either for the server side classes or the client side classes.

The HTML specification documentation
To generate the HTML specification documentation (also called specdocs) execute xins specdocs-
myproject.

This will generate a set of static HTML pages that you can view by opening the file build\specdocs
\index.html.

The HTML pages contain:

• An overview with a description of the different functions, types and error codes used in your API.

• A link for each environment to the meta functions _GetVersion, _GetStatistics and
_GetSettings.

• For each function, a description of the input parameters, output parameters, the validation rules and the
possible result codes for this function.

• For each function, a test form page to test the function.

• For each example in the function, a description of the URL request, the expected result for this example
and the links to execute the example on the given environments.

• For each of the types, a description of the type. If the type is an enumeration, the possible values are
written. If the type is a pattern then the regular expression for the pattern is written along with a link
to test the provided pattern.

The web application.

Create the web application

The web application is packaged as a WAR file. When this WAR file is deployed on the servlet container,
your functions are accessible through HTTP (for example using Internet Explorer).

To create the web application, execute xins war-myproject.

XINS User Guide

8

This command will create a myproject.war file in the directory build\webapps\myproject\.

This target also generates the skeleton file for the implementation, if the file did not exist.
In our example the file will be apis\myproject\impl\com\mycompany\myproject\api
\MyFunctionImpl.java.

You can set some compilation and running properties by creating a build.properties file in your
project directory and set any of the following properties in the file:

Table 1. build.properties properties

Property name Description Example

build.compiler The compiler to use to compile the
classes. (Defaults to javac)

build.compiler=jikes

build.deprecation Warn if deprecated methods are
used. (Defaults to true)

build.deprecation=false

build.java.version The version of Java where the
code will be executed.

build.java.version=1.3

org.xins.server.config The location to the runtime
properties file. Slash and
backslash in the property value
are translated with the system path
separator in XINS. The location
can also be a URL.

org.xins.server.config=../
xins.properties

servlet.port The port number for the XINS
servlet container (Defaults to
8080).

servlet.port=8181

jmx.port The port number for JMX
monitoring (Defaults to 1090).

jmx.port=2222

test.environment The environment upon which the
tests should be executed (Defaults
http://localhost:8080/).

test.environment=http://
integration.mycompany.com/
myproject/

test.start.server Flag to indicate that the API
should be started when the tests
are executed (Defaults to false).

test.start.server=true

wsdl.endpoint The endpoint to use in the
generated WSDL file (Defaults
to the first entry of the
environment.xml file)

wsdl.endpoint=http://
www.mycompany.com/
myproject/

reload.stylesheet A work around property for
Xerces library that produces
sometimes putDocumentInCache
errors.

reload.stylesheet=true

These properties can also be passed to the system by using -D<property name>=<property
value> on the command line.

Run the web application

To run the web application, execute xins run-myproject.

XINS User Guide

9

It is adviced to execute the web application with a specified runtime properties file. If no file is specified,
only the local machine will have access to the API. For more information go to the runtime properties
section.

You can also start the API using java [-Dorg.xins.server.config=<runtime property file>] -jar
myproject.war [-port=<port number>] [-gui]. It is not needed to have XINS or Ant installed to run the
API. The requester or the API or the testers for the API can receive the WAR file and execute it. The -gui
option will start a user interface where the system output will be logged in a console.

To start the WAR file using the Jetty servlet container, create a file named myproject.xml int the
projects directory with the following content :

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC
 "-//Mort Bay Consulting//DTD Configure 1.2//EN"
 "http://jetty.mortbay.org/configure_1_2.dtd">

<Configure class="org.mortbay.jetty.Server">

 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="port">8080</Set>
 </New>
 </Arg>
 </Call>

 <Call name="addWebApplication">
 <Arg>/myproject/</Arg>
 <Arg>build/webapps/myproject/myproject.war</Arg>
 </Call>

</Configure>

Then start java -Dorg.xins.server.config=xins.properties -jar %JETTY_HOME%\start.jar
myproject.xml in the projects directory.

Now execute your function by going to the address http://localhost:8080/myproject/?
_function=MyFunction.

As nothing is implemented in your method, your function will just return a successful result.

If you want to get more information on your function or on XINS run the following meta functions :

• http://localhost:8080/myproject/?_function=_GetVersion

• http://localhost:8080/myproject/?_function=_GetStatistics

• http://localhost:8080/myproject/?_function=_GetSettings

Note

If you want to run the example in tomcat, you need to copy the demo\build\webapps
\myproject\myproject.war to the tomcat\webapps directory and then start tomcat
using the startup script. The URLs to access the functions will then start with http://
localhost:8080/myproject/.

http://localhost:8080/myproject/?_function=MyFunction
http://localhost:8080/myproject/?_function=MyFunction
http://localhost:8080/myproject/?_function=_GetVersion
http://localhost:8080/myproject/?_function=_GetStatistics
http://localhost:8080/myproject/?_function=_GetSettings

XINS User Guide

10

The server-side Javadoc
To generate the Javadoc on the server-side execute xins javadoc-api-myproject.

This will generate a set of static HTML pages that you can view by opening the file build\javadoc-
api\myproject\index.html.

The client API
To generate the jar file for the client API execute xins jar-myproject.

This will generate a jar file located at build\capis\myproject-capi.jar.

The following code shows how to use the generated CAPI to call a function. In this example, the
myproject API is running on the same computer.

import org.xins.common.service.TargetDescriptor;

import com.mycompany.myproject.capi.CAPI;
import com.mycompany.myproject.capi.MyFunctionResult;

public class TestMyFunction {
 public final static void main(String[] args) throws Exception {

 // Create the descriptor for the service
 TargetDescriptor descriptor =
 new TargetDescriptor("http://localhost:8080/myproject/", 20000);

 // Create the CAPI instance
 CAPI project = new CAPI(descriptor);

 // Invoke the function
 MyFunctionResult result = project.callMyFunction();

 // No exceptions thown
 System.out.println("Call successful: " + result.getOutputMessage());
 }
}

It's also possible to invoke your API without using the generated CAPI file but by using the
XINSServiceCaller. Examples on how to do it are provided in the XINSServiceCaller Javadoc
[javadoc/org/xins/client/XINSServiceCaller.html].

The generated callMyFunction method can throw several kind of exceptions. For more information,
refer to the generated CAPI Javadoc. Note that a subclass of the exception could be thrown.
For example, if you want to catch the exception only when the function returns an error code,
catch the org.xins.client.UnsuccessfulXINSCallException which is a subclass of the
org.xins.client.XINSCallException.

You can also catch all the exception at once by catching the class
org.xins.common.service.CallException.

 try {
 // Invoke the function

javadoc/org/xins/client/XINSServiceCaller.html
javadoc/org/xins/client/XINSServiceCaller.html

XINS User Guide

11

 project.callMyFunction();
 } catch (UnsuccessfulXINSCallException ex) {
 System.out.println("A standard error occured: " + ex.getErrorCode());
 } catch (CallException ex) {
 System.err.println("Execution failed: " + ex.getMessage());
 }

Most of the time your function will have input parameters to pass to the function. This can be done by
passing the parameters to the callMyFunction method:

import com.mycompany.myproject.capi.CAPI;
import com.mycompany.myproject.types.Gender;
...
 MyFunctionResult result = project.callMyFunction(Gender.MALE, "Doe");

or to use the generated MyFunctionRequest object:

import com.mycompany.myproject.capi.CAPI;
import com.mycompany.myproject.types.Gender;
...
 MyFunctionRequest request = new MyFunctionRequest();
 request.setGender(Gender.MALE);
 request.setPersonLastName("Doe");
 MyFunctionResult result = project.callMyFunction(request);

In the second case, you don't need to call the set method for the optional parameters that are not set whereas
in the first case you need to pass null values.

A new package org.xins.client.async has been added in XINS 1.4.0. This package provides you
with some objects which facilitates the call to remote API asynchronously. For more information, read the
article published at http://xins.sourceforge.net/asynchronous.html.

As of XINS 1.5.0, it is also possible to call the API without using the HTTP connection but directly as a
function call. You just need to pass the location of the war file containing the API. As no connection is
involved, the time-out represents the total time-out:

TargetDescriptor descriptor =
 new TargetDescriptor("file:///home/myuser/myproject.war", 20000);

It is possible to specify the HTTP method to use (POST or GET, default is POST), or whether redirection
returned HTTP code should be followed (default is false by using the XINSCallConfig class.

The client-side Javadoc
To generate the Javadoc on the client-side execute xins javadoc-capi-myproject.

This will generate a set of static HTML pages that you can view by opening the file build\javadoc-
capi\myproject\index.html.

The Open Document Format
The Open Document Format [http://en.wikipedia.org/wiki/OpenDocument] is a standard for word
processors documents (similar to .doc). XINS contains a target that can generate the specifications of an
API in this format.

http://xins.sourceforge.net/asynchronous.html
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/OpenDocument

XINS User Guide

12

To create the document, execute xins opendoc-myproject.

This will generate a build\opendoc\myproject\myproject-specs.odt file than can be
opened with for example Open Office [http://www.openoffice.org/]. Note that Open Office is free and can
save your document as a MS Word document or as PDF.

Implementing the method
For the moment our function has no input, no output and no implementation, we will adapt our previous
project to add a minimum of functionalities.

Defining Input, Output.
Let's add to our project three input fields and a result with one output field.

When you are adding input and output parameters to your function, you should at the same time declare
the type of your parameter. There are two kinds of types, the ones already defined in XINS and the ones
you create. The types already defined in XINS are explained in the next chapter.

To create a new type for your project execute xins create-type.

The command will ask you for the name of the API, the name of the type and the description of the type.
It will then create a new <type name>.typ file with the content :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE type PUBLIC "-//XINS//DTD Type 3.0//EN"
"http://www.xins.org/dtd/type_3_0.dtd">

<type name="TypeName"
rcsversion="$Revision: 1.102 $" rcsdate="$Date: 2013/01/02 17:28:58 $">

 <description>Description of the type.</description>

</type>

The different possibilities of types that could be defined are listed in the section called “Defined types”.

Let's create two types for our project, one with the type lastName and one with the type gender.

Edit the LastName.typ file with

 <description>Last name of a person.</description>
 <pattern>[A-Za-z]{1,50}</pattern>

Edit the Gender.typ with

 <description>A gender.</description>
 <enum>
 <item name="male" value="m" />
 <item name="female" value="f" />
 </enum>

If the name attribute is not specified it will be the same as the value attribute.

http://www.openoffice.org/
http://www.openoffice.org/

XINS User Guide

13

Now that the types are created, we need to add the declaration in api.xml and to set them as input
parameters in our function. For the output we will use a predefined type so there is no need to define the
type in api.xml.

Add <type name="Gender"/> and <type name="LastName"/> to api.xml.

Add to the file MyFunction.fnc :

<input>
 <param name="gender" required="true" type="Gender">
 <description>The gender of the person.</description>
 </param>
 <param name="personLastName" required="true" type="LastName">
 <description>The last name of the person.</description>
 </param>
</input>
<output>
 <param name="message" required="true" type="_text">
 <description>The message returned to this person.</description>
 </param>
</output>

You can also assign a default value for an optional parameter using the default attribute.

 <param name="gender" required="false" type="Gender" default="m">
 <description>The gender of the person.</description>
 </param>

Defining the test environments.
You can specify in XINS the environments where you want to test the API.

As seen in the section called “api.xml”, it's possible create the file containing the test environments by
using the xins create-api or by creating the file with a text editor and editing the xins-project.xml.

When you generate the specification documentation, for each function defined in the API a link below
"Test forms" that points you to a HTML form which is used to fill the input parameters of the function.
When you then click on Submit the function will be executed on the specified environment. This requires
of course that the application is installed on the defined environment.

The environments are also listed on the main page of the specification documentation along with some
links that provide direct access to some meta functions.

If you want to add a new environment, just add for example <environment id="production"
url="http://www.mycompany.com:8080/my-project/" /> to environments.xml.

Defining the examples.
You can also define some examples for your API in the specification. The definition of the examples are
done in the function specification file.

Let's add some examples to MyFunction.fnc by adding the following text after the output section:

<example resultcode="_InvalidRequest">

XINS User Guide

14

 <description>Missing parameter : lastName</description>
 <input-example name="gender">m</input-example>
</example>
<example resultcode="_InvalidRequest">
 <description>Invalid parameter</description>
 <input-example name="gender">m</input-example>
 <input-example name="personLastName">Bond 007</input-example>
</example>
<example>
 <description>Message returned.</description>
 <input-example name="gender">f</input-example>
 <input-example name="personLastName">Lee</input-example>
 <output-example name="message">Hello Miss Lee</output-example>
</example>

This example shows how to add some examples to a function with input and output parameters but
it's also possible to define examples for a function that contains a data section or returns a result code
that contains some parameters. For more information, look at the function specification defined in the
allinone project.

The examples are shown on the generated specification documentation and if you have also defined some
environments, you can execute the example by just clicking the provided links.

In XINS 1.4.0, you can create an example using xins create-example. The API should be running on
http://localhost:8080/<api name>/. The create-example target will ask you for the name of the API and the
request URL. The example is automatically added to the function.

Implementing your function.
You can edit the new MyFunctionImpl.java generated file located in the apis\myproject
\impl\com\mycompany\myproject\api directory with

 public final Result call(Request request) throws Throwable {

 String nomination = null;
 if (request.getGender().equals(com.mycompany.myproject.types.Gender.MALE)) {
 nomination = "Mister";
 } else {
 nomination = "Miss";
 }
 SuccessfulResult result = new SuccessfulResult();
 result.setMessage("Hello " + nomination + " " +request.getPersonLastName());
 return result;
 }

Executing your function
We first need to rebuild the WAR file, the spec docs, the client jar and the javadoc by executing xins all-
myproject.

Now you must restart the servlet container server and reopen the file build\specdocs\index.html.
You can test your function by either clicking on the link provided with the examples or by using the test
forms.

XINS User Guide

15

The error code
An error code (previously named result code) contains the description of an error that occurred when
executing the implementation code.

When you generate the specification documentation, you can already notice that some error codes already
exist by default. These error codes are returned by the system when the problem occurs.

You should create custom error codes whenever the implementation of your function would encounter an
error condition that should be distinguishable for the caller. For example, if you connect to another service,
if you perform I/O operations or if the input fields should match fields in a database.

We will now extend our example with a NoVowel error code. Note that this error could be also detected
by improving the lastName pattern.

Create a error code by executing xins create-rcd.

The command will ask you for the name of your api and the name and the description of your error code.
The script will then create a new NoVowel.rcd file in the directory <specsdir>/<api name>
with the content :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE resultcode PUBLIC "-//XINS//DTD Result Code 3.0//EN"
 "http://www.xins.org/dtd/resultcode_3_0.dtd">

<resultcode name="NoVowel"
 rcsversion="$Revision: 1.102 $" rcsdate="$Date: 2013/01/02 17:28:58 $">

 <description>The name does not contain any vowels.</description>

</resultcode>

Once this file is created, add the line <resultcode name="NoVowel" /> in the api.xml file.
A reference to this error code also needs to be defined in the function that may return this error code. In
our case MyFunction.fnc. Also add the line <resultcode-ref name="NoVowel" /> at the
beginning of the output section of MyFunction.fnc.

Now we need to adapt our Java code to detect if the given last name does not include any vowels and return
the error code when it is the case. Add the following code at the beginning of your call() method.

String lastNameLower = request.getPersonLastName().toLowerCase();
if (lastNameLower.indexOf('a') == -1 && lastNameLower.indexOf('e') == -1 &&
 lastNameLower.indexOf('i') == -1 && lastNameLower.indexOf('o') == -1 &&
 lastNameLower.indexOf('u') == -1 && lastNameLower.indexOf('y') == -1) {
 return new NoVowelResult();
}

Now we need to adapt the specification of your function to include this result code in the examples. We
moved the example 3 to example 4 as we wanted to keep the order "unsuccessful results" "successful
results" in our examples and we added the example 3 with

<example resultcode="NoVowel">
 <description>The name does not contain any vowels.</description>
 <input-example name="gender">f</input-example>
 <input-example name="personLastName">qslkfj</input-example>

XINS User Guide

16

</example>

You can now regenerate everything with xins all-myproject and after restarting the servlet container
server, test the new example using the generated specification documentation.

It is possible to have parameters and a data section in the error code. To do it, add an output element to
the error code. For the examples in the specification and setting the values in the implementation, just do it
as you would do for a function with output parameters or data section. The allinone example contains
a AlreadySet error code with one parameter.

Since XINS 1.4.0, it is possible to specify if an error code is functional or technical. Functional error code
are error that may occur such as InvalidPassword where as technical errors indicate a problem such
as DatabaseCorrupted. By default an error code is technical. To specify the error code as functional
add the attribute type="functional" to the resultcode element.

If you want to reuse an error code already defined in another API, you don't need to copy the file. You can
also point to the error code of the API. Its uses the same system as in the section called “Shared types”.

The runtime properties
You may want to add some flexibility to your application by changing a property without needing to
recompile the code or restarting the server. This way you can distribute the same WAR file of your web
application to different places. You can think at the following situations:

• A file location may differ on the computers on which you want to deploy your application.

• The location of a database may differ depending on whether you want to test your application or deploy
it in a production environment.

• A username/password which you don't know the value and should be entered by the administrator.

• A link to another XINS service, in case of a distributed environment.

• You would like to adjust settings that influence performances.

• You would like to adjust the debugging level.

The properties for your APIs are defined in the runtime properties file often named
xins.properties. This file location is passed to the application server with the system property
org.xins.server.config.

To start the WAR file using the XINS servlet container, just execute xins -
Dorg.xins.server.config=xins.properties run-myproject. You can also set the location of the
xins.properties in the build.properties and then execute xins run-myproject.

Note

If you want to run the example in tomcat, you need to add in the file tomcat\conf
\catalina.properties the line org.xins.server.config=c:\\Program\
Files\\xins\\demo\\xins.properties.

Example of runtime properties file:

#___
General XINS properties

XINS User Guide

17

Check configuration file every 60 seconds
org.xins.server.config.reload=60

Access rules
org.xins.server.acl=allow 127.0.0.1 *;

Logging properties
org.xins.logdoc.locale=en_US

An example is also provided in the demo\xins.properties file.

It's also possible to define a different runtime property file for each API you are running on the servlet
container. To define a specific runtime property file for an API, use org.xins.server.config.<api name>
instead of org.xins.server.config.

The properties
Some properties defined in this file are already interpreted by the system:

Table 2. xins.properties runtime properties

Property name Required Description Example

org.xins.server.config.reloadno, defaults to 60. Interval in seconds for
check the xins.properties
file for any changes.

org.xins.server.config.reload=60

org.xins.server.acl no, defaults to localhost. Access rules for the
functions

org.xins.server.acl=allow
127.0.0.1 *; \
allow 192.168.0.0/24
MyFunction

org.xins.server.acl.<api
name>

no Access rules for the
functions of the specified
API. The specified rules
are executed before the
generic one.

org.xins.server.acl.myproject=allow
127.0.0.1 *; \
deny 192.168.0.0/24
MyFunction

org.xins.server.config.includeno A comma separated list
of runtime property files
to include. The files
should use relative paths.

org.xins.server.config.include=../
default-xins.properties

org.xins.logdoc.locale no, defaults to en_US. The locale to be used for
the logging messages.

org.xins.logdoc.locale=en_US

org.xins.server.jmx no, false by default. Enables the management
of the API using
JMX (Java Management
eXtension).

org.xins.server.jmx=true

org.xins.server.contextID.filterno, all types of context ID
are accepted by default.

The regular expression
pattern for the expected
format of the context
ID. If the context ID is
invalid, a new one will be
generated.

org.xins.server.contextID.filter=[a-
zA-Z]{5}

XINS User Guide

18

org.xins.server.logging.initno, true by default Initialize the logdoc
logging

org.xins.server.logging.init=false

org.xins.server.contextID.pushno, true by default Push the contextID to the
NDC

org.xins.server.contextID.push=false

org.xins.logdoc.stackTraceAtMessageLevelno, defaults to false
meaning that the stack
traces are logged at
DEBUG level.

Flag indicating that the
exception stack trace
should be logged at
the same level as the
message.

org.xins.logdoc.stackTraceAtMessageLevel=true

log4j.* no, defaults to console. Logging properties used
to adapt the debug level,
formatting or output to
your needs.

log4j.rootLogger=DEBUG,
console

log4j.<api
name>.rootLogger

no, defaults to
log4j.rootLogger.

Root logger for the
specified API.

log4j.myproject.rootLogger=INFO,
logfile_myproject

Getting properties value
Now we will adapt the xins.properties for the MyFunction implementation by adding the
following lines:

Salutation message for the person
salutation=Hello

We now need to change the implementation to read and use the property. Note that the property should be
able to be changed at runtime. Add the following code to MyFunctionImpl.java

import org.xins.common.collections.MissingRequiredPropertyException;
import org.xins.common.collections.InvalidPropertyValueException;
import org.xins.common.manageable.BootstrapException;
import org.xins.common.manageable.InitializationException;

...
 /**
 * The salutation message.
 */
 private String _salutation;

 protected void initImpl(Map<String, String> properties)
 throws MissingRequiredPropertyException,
 InvalidPropertyValueException,
 InitializationException {

 // Get the salutation
 _salutation = properties.get("salutation");
 if (_salutation == null || _salutation.trim().equals("")) {
 throw new MissingRequiredPropertyException("salutation");
 }
 // Here you can also chack the value and throw an
 // InvalidPropertyValueException if needed
 }

XINS User Guide

19

 public final Result call(Request request) throws Throwable {
...
 result.setMessage(_salutation + " " + nomination + " " +
 request.getPersonLastName());
 return result;
 }

Now recompile your code, restart the server, execute the function, change the value in
xins.properties to Hi, wait for the server to reload the properties file and execute the function again.

The API class defines a deinitImpl() method. This method is used to release resources when you
stop the API.

Note

When the xins.properties file has changed, only the initImpl() method is invoked. The
deinitImpl() is called only when you stop the servlet container.

The API class has a bootstrapImpl2(Map<String, String> buildSettings) method
that is called the API is started. The buildSettings passed as parameters are the properties stored in the
web.xml file included in the deployment war file.

The API class has a reinitializeImpl() method. This method can be invoked in your
implementation to ask the framework to reinitialize the API.

Defining properties
XINS 1.3.0 includes a new system that allows to define runtime properties that you will use in your
API in the impl.xml file. In this file you define the name of the property, its description, its type and
whether is property is required or optional. The value of the property still needs to be defined in the
xins.properties file.

Example:

<impl>
 <runtime-properties>
 <property name="myproject.eurodollar.rate" type="_float32" required="true">
 <description>The price in dollars of 1 euro.</description>
 </property>
 </runtime-properties>
</impl>

Now when the specification documentation is generated, a new page is available containing the list of the
runtimes properties used by the API along with their description, their type and whether the property is
required or optional. This page makes it easier to deploy an API with the correct runtime properties set.

Another advantage of defining the properties this way is that you don't need to implement the initImpl
method to retreive the property values. A class is generated that checks and retreives the properties. If the
value of a property is incorrect or a required property is missing then the API will fail with a description
of the problem. The getAPI().getProperties() method can also be called from the initImpl
method of your function, if you want for example initialize another object based on a runtime property.

Example on how to use the generated class:

 // No imports needed, no initImpl method needed

XINS User Guide

20

 public final Result call(Request request) throws Throwable {
 SuccessfulResult result = new SuccessfulResult();
 result.setPriceInEuro(request.getPriceInDollar() /
 ((RuntimeProperties) getAPI().getProperties()).getMyprojectEurodollarRate());
 return result;
 }

If the property was optional, a java.lang.Float object would have been returned.

The bootstrap properties
The bootstrap properties are the properties defined in the generated web.xml file. These properties
cannot be modified at runtime. You can view the properties by calling the calling the meta function
_GetSettings. When the WAR file is created XINS set some default properties which are:

org.xins.api.name The name of the API.

org.xins.api.build.version The version of XINS with which the WAR file was
created.

org.xins.api.version The version of the API (may be empty).

org.xins.api.build.time The time at which the WAR file was created.

org.xins.api.calling.convention The name of the default calling convention.

You can also define your own properties. Just add <bootstrap-properties> and <bootstrap-
property> elements to the impl.xml file.

Example:

<impl>
 <bootstrap-properties>
 <bootstrap-property name="xiff.login.page">Login</bootstrap-property>
 <bootstrap-property name="xiff.default.command">DefaultCommand</bootstrap-property>
 </bootstrap-properties>
</impl>

Note

Bootstrap properties starting with org.xins. are reserved except for the
org.xins.server.config bootstrap property. This property could be set to indicate the
location of the runtime properties file in the case that you cannot pass it in the command line of
the Servlet container.

The values of the properties will be available in the bootstrapImpl(Map<String, String>
bootstrapProperties) method of your functions and shared instances.

Note

Since XINS 2.2 it is also possible to define in impl.xml extra XML elements you want to add
to the generated web.xml file. Tou can think at elements such as context-param, filter,
listener, ...

To do it, use the following syntax (after runtime-properties):

<impl>

XINS User Guide

21

 <web-app element="context-param">
 <![CDATA[
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/applicationContext.xml,/WEB-INF/daoContext.xml</param-value>
]]>
 </web-app>
 <web-app element="listener" id="spring">
 <![CDATA[
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
]]>
 </web-app>
</impl>

Integration with CVS / Subversion
As you've probably already noticed all of our specification files have rcsversion="$Revision
$" and rcsdate="$Date$" when the files are stored in a control version system such as CVS, the
$Revision$ is replaced by something like $Revision 1.2 $ and $Date$ with something like
$Date 2006/11/13 15:16:47 $. This is particularly useful when you want to keep track of the
version and the date of the last changes of the specification.

XINS allows you also to freeze the different parts of the specification. This is particularly useful if the
person or department using the API is not the same as the one designing it or implementing the API.
This way the different parties can assume the required input or output parameters. If for some reasons a
function or a type changes, the specification documentation would mark the function or type in red with
a tag "broken freeze".

To freeze a function, a type or a result code add the attribute freeze next to the name in api.xml. The
value of this attribute should be the version of the frozen specification.

For example

<api name="myproject" owner="johnd"
rcsversion="$Revision: 1.102 $" rcsdate="$Date: 2013/01/02 17:28:58 $">
 <function name="MyFunction" freeze="1.3" />

 <type name="Gender" freeze="1.1" />
 <type name="LastName" />

 <resultcode name="NoVowel" freeze="1.2" />
</api>

You can also specify in the xins-projects.xml the root of the cvsweb location:

<cvsweb href="http://cvs.mycompany.com/cvsweb/myprojects" />

If this element is provided, broken freeze will provide you with a link where you will be able to see the
changes done for this item since it has been frozen. If you use viewcvs only the first provided link will
work.

Managing dependencies
For advanced APIs, you would probably need to use some external libraries or to use other services. This
can be done by adding dependencies to your API.

XINS User Guide

22

In xins-projects.xml you can add an attribute dependenciesdir to indicate in which directory
the jar files used by your project will be included. For example

<project name="myprojects"
 rcsversion="$Revision: 1.102 $" rcsdate="$Date: 2013/01/02 17:28:58 $"
 dependenciesdir="../other-projects"
 domain="com.mycompany">
</project>

In apis\<api>\impl\impl.xml you add the jar files needed for your project using the dependency
element. For example

<impl>
 <dependency dir="utils" />
 <dependency dir="capis" includes="project2-capi.jar" />
 <dependency dir="spring" includes="spring.jar" deploy="false" />
</impl>

In the previous example when your implementation will be compiled the following jar files will be in the
classpath: ..\other-projects\utils*.jar;..\other-projects\capis\project2-
capi.jar;..\other-projects\xins\xins-client.jar. These files will also be included
in the generated WAR file except for spring.jar. This deploy attribute has been introduced in XINS 2.2.

An example of dependencies is provided in XINS with the filteredproject demo. This API calls
another API (myproject) using CAPI.

Note

The order of the elements in the imp.xml is important, if the elements are not in the correct order
the validation of impl.xml with the DTD will fail.

The order is logdoc, bootstrap-properties, runtime-properties,
content, dependency, calling-convention, instance.

Adding other files to the WAR file
It is possible to add any kind of files to the WAR file. This is particulary useful if you want to deploy a
web site at the same time as your API.

To do it add content elements to the impl.xml file. Note that you'll need to also add a web-path attribute
to the impl element because the API is by default mapped with the root path. So in order to access the file
you have added to the WAR file, you will need to associate the API with another path.

Example:

<impl web-path="store">
 <content dir="apis/petstore" includes="xslt/*.xslt" />
 <content dir="apis/petstore/web" includes="*.html *.js" />
 <content dir="apis/petstore/web" includes="*.jpg" web-path="images" />
</impl>

Note

If you only want to add files to the WEB-INF directory, for example to use them in your API,
then you don't need to specify the web-path attribute to the impl element.

XINS User Guide

23

Multiple implementations and stubs
XINS can support multiple implementations for the same API. To add a new implementation for the API
add in the xins-projects.xml an impl element with a name attribute to the api. For example

<project name="myprojects"
 domain="com.mycompany">
 <api name="allinone">
 <impl />
 <impl name="mystub" />
 </api>
</project>

New targets are created for this implementation. Only server side targets (war, javadoc-api, run, ...) are
created for this new implementation. The other targets only depend on the specification which doesn't
change. The new target syntax is <action>-<api name>-<implementation name>. For
example to compile the new implementation of the example above execute xins classes-allinone-mystub.

Note

The list of the API names with the possible implementation is printed at the end of the execution
of the xins help command.

Having the possibility to have more than one implementation is useful when you want to create a stub
(fake API) so that other systems can test the API before being implemented.

XINS offers the possibility to generate a stub implementation of the API. The stub is generated based on
the examples defined in the function specification.

To generate the stub implementation execute xins stub-<api name>-<implementation name>. Then the
stub file are generated in the directory apis\<api name>\impl-<implementation name>
\<package name>. You can also edit the generated code, for example to be more flexible with some
input parameters or to return other values. Note that the stub target won't replace existing files.

Testing
XINS offers different ways to test your API.

The first way is using the generated test forms or the links provided with the examples on the function
page of the generated specdocs.

XINS offers also the possibility to test the API using the JUnit library. XINS will generate the unit test
based on the examples defined in the functions specification. To be able to test your API proceed as follow:

• Add a test element to the api element in the xins-projects.xml. For example:

<project name="myprojects"
 domain="com.mycompany">
 <api name="allinone">
 <impl />
 <test />
 </api>
</project>

XINS User Guide

24

• Run the API. For example: xins run-allinone.

• Execute the test target. For example: xins test-allinone.

The test target will generate the unit tests in the directory apis\<api name>\test\<package
name>. The main test case executed is APITests.java which includes the function tests. One example
matches one test.

The generated unit tests are editable. You can adapt it to better fit the expected result or to add your own
unit tests. Note that the test target won't overwrite files if the test directory already exists.

The result of the unit tests is located in the directory build\testresults. Results are provided
in XML and HTML. The XML contains the configuration settings and the logs generated. The HTML
contains the results of the test in a more human readable format.

To be able for the test target to work correctly, you have to copy the junit.jar file located in xins lib
directory to the lib directory of ant.

The test target also have an option to run the API before starting the tests. To use it, add
test.start.server=true to the build.properties. If this option is set, you don't need to
execute the xins run-<api name> command.

If you want to execute the tests on another environment than you local machin, you can specify it in the
build.properties by setting the properties test.environment.

Note

The <test /> element should be added after the <impl /> and <environments />
elements if defined.

Categories
Sometimes an API can contains a lot of functions. It become then more difficult to find the function in
the specdocs. XINS 1.3.0 introduced the notion of categories. With categories you can specify functions
that belong together.

Example:

Define the category names at then end of api.xml:

<api name="allinone">
...
 <category name="DataSections" />
</api>

Then create a category file with the name <category name>.cat. This file will define the function
that are in the same group.

Example DataSections.cat:

<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE category PUBLIC "-//XINS//DTD Category 1.3//EN" "http://www.xins.org/dtd/category_1_3.dtd">
<category name="DataSections">
 <description>Data section related functions.</description>

XINS User Guide

25

 <function-ref name="DataSection" />
 <function-ref name="DataSection2" />
 <function-ref name="DataSection3" />
</category>

Now if you regenerate the specdocs, The categories will appear at the top of the API page. You can then
more easily find the function you wanted.

Managing logs
XINS includes it's own logging system called logdoc which is based on log4j.

Managing the logs on the server side.
You can also manage the debugging settings of XINS by changing the xins.properties file. Here are the
main logging settings that can be changed:

Table 3. Log4j properties

Property Value examples Description

log4j.rootLogger DEBUG, console, logfile Indicates the level of logging and
the modules that will receive the
output.

log4j.<api name>.rootLogger INFO, logfile2 Indicates the level of logging and
the modules that will receive the
output for the specified API.

log4j.appender.console org.apache.log4j.ConsoleAppenderIndicates where the output is
redirected for the module.

log4j.appender.console.layout org.apache.log4j.PatternLayout Indicates the pattern for the output
header (text that precedes the
output text).

log4j.appender.console.layout.ConversionPattern%d %-5p %c %x - %m%n Indicates the format of the output
header.

log4j.logger.org.xins.common.expiry.3411ERROR Changes the log level for a
message. This can be useful if you
want to hide a message or if you
want to show a message.

The log levels are DEBUG < INFO < NOTICE < WARN < ERROR < FATAL. This means that if you set the
log level to ERROR, only the ERROR and FATAL messages will be logged.

For more information on the possible characters in the conversion pattern, visit the log4j website [http://
logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html].

The nested diagnostic context (NDC - %x) is set to the value of the _context parameter of the query. If
no _context parameter is passed a default context is created as apiName@localHost:yyyyMMdd-
HHmmssNNN:random where:

• apiName is the name of the API.

• localHost is the IP address of the computer that is running the api.

http://logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/docs/api/org/apache/log4j/PatternLayout.html

XINS User Guide

26

• yyyyMMdd-HHmmssNNN is the date of the request (year - month - day - hour - minute - second -
millisecond).

• random is a 5 digits long random hexadecimal generated number.

For more information on the possible logging properties and values, visit log4j documentation page [http://
logging.apache.org/log4j/docs/manual.html].

Adding your own logs.
It's sometimes useful to log events that may happen in your function. To do so, you need to create what
is called a logdoc (log documentation).

To create a new logdoc execute xins create-logdoc.

The command will ask you for the name of your api. The script will then create a new log.xml file in
the directory apis\<api name>\impl with the content:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log PUBLIC "-//XINS//DTD XINS Logdoc 2.3//EN"
 "http://www.xins.org/dtd/log_2_3.dtd">

<log>

 <translation-bundle locale="en_US" />

 <group id="exampleid" name="Example">
 <entry id="10000" level="DEBUG">
 <description>Example of logdoc with some parameters.</description>
 <param name="parameter" />
 <param name="number" nullable="false" type="int32" />
 </entry>
 <entry id="10001" level="ERROR" exception="true">
 <description>Example with an exception.</description>
 </entry>
 </group>
</log>

The group id is used for the creation of the log key (e.g.
com.mycompany.myproject.api.exampleid.10001) and the group name is used for the
description of the group.

It also creates a default translation file translation-bundle-en_US.xml with the content:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE translation-bundle PUBLIC "-//XINS//DTD XINS Translation Bundle 2.3//EN"
 "http://www.xins.org/dtd/translation-bundle_2_3.dtd">

<translation-bundle>
 <translation entry="10000">Example of logdoc with the parameter <value-of-param name="parameter" format="quoted" /> and <value-of-param name="number" />.</translation>
 <translation entry="10001">Example of an exception.</translation>
</translation-bundle>

You can now use the logdoc in your function implementation by calling the method
Log.log_10000(myParam, 36);

http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/manual.html
http://logging.apache.org/log4j/docs/manual.html

XINS User Guide

27

The command will also add the element <logdoc /> to the impl element of the impl.xml file. If you
want to use the logs in packages other than the default one add the attribute accesslevel="public"
to the logdoc element.

The Logdoc consist of a main log.xml file which defines the possible locale for the logs of this API
and the groups of entries. Each entry has an id that is by convension a number higher than 10000 as
numbers between 1000 and 9999 are reserved for XINS. Ids don't have to be consecutive numbers. It's
even advisable to have numbers gaps between groups.

If the entry has the attribute exception with the value true, then the exception should be
the first parameter when invoking the method. For example the id 10001 should be invoked with
Log.log_10001(myException);.

The possible types for a parameter are boolean, int8, int16, in32, int64, text and object.

By default for a parameter the nullable attribute is set to true and the type attribute is set to text.

These types match respectively in Java the types boolean, byte, short, int, long, String and
Object.

If you use logdoc in your API, the list and the description of the defined log entries will be available in
the specification documentation.

In the log.xml the warning level is set with level="WARNING" but the level is translated as the WARN
log4j level.

Note that when the specification documentation (specdocs) is generated the HTML pages describing
the logging message is also generated. You can see the XINS logdoc at http://xins.sourceforge.net/
logdoc.html.

Configuring the properties files for specific logs
Sometimes too much log information is printed and you would like to remove some of the messages printed
by the log.

There are several ways to do this. The best ways is to hide the logging messages you don't want.

The following example will hide the HTTPClient DEBUG logs:

log4j.logger.org.apache.commons.httpclient=INFO
log4j.logger.httpclient=INFO

The following example will hide all XINS messages which are not at least at the WARN level:

log4j.logger.org.xins=WARN

The following example will hide the specific logging message because the message is at DEBUG level:

log4j.logger.org.xins.server.lifespan.init.3402=INFO

The locale can also be specified in the XINS properties file:

Locale used for logging
org.xins.server.log.locale=en_US

The logdoc with the locale en_US and fr_FR are provided in XINS.

http://xins.sourceforge.net/logdoc.html
http://xins.sourceforge.net/logdoc.html

XINS User Guide

28

An example of a XINS properties file with a customized logging system can be found in the demo
directory.

Managing load balancing and fail over
XINS can also manage load balancing and fail over when you want to invoke your function using CAPI.
To do so, your function needs to be started on 2 computers. Our code is based on the CAPI example done
in the section called “The client API”.

The first possibility would be to use the GroupDescriptor (javadoc [javadoc/org/xins/common/
service/GroupDescriptor.html]) instead combined with a TargetDescriptor (javadoc [javadoc/org/
xins/common/service/TargetDescriptor.html]):

// Create the descriptor for the service
TargetDescriptor server1 = new TargetDescriptor("http://192.168.0.20:8080/my-project/", 20000);
TargetDescriptor server2 = new TargetDescriptor("http://192.168.0.21:8080/my-project/", 20000);
Descriptor[] servers = {server1, server2};

// Create the descriptor for load balancing
GroupDescriptor descriptor = new GroupDescriptor(GroupDescriptor.RANDOM_TYPE, servers);
/* If you wanted to have fail over replace the above line with
 GroupDescriptor descriptor = new GroupDescriptor(GroupDescriptor.ORDERED_TYPE, servers);*/

The drawback of this method is that it's not flexible, any changes of IP addresses, time-out or if you want
to add a new server, you would need to adapt the code, recompile and then redeploy it.

A better method would be to have the URLs and the time-out in a property file. The only code you need
then to create your descriptor is

// Build the descriptor
Descriptor descriptor = DescriptorBuilder.build(properties, "capis.myproject");

where properties is the Map<String, String> object that contains your parameters.

If you only have one server (for example your computer for testing), set the properties as

capis.myproject=service, http://127.0.0.1:8080/my-project/, 20000

If you want to have load balancing, set the properties as

capis.myproject=group, random, server1, server2
capis.myproject.server1=service, http://192.168.0.20:8080/my-project/, 20000
capis.myproject.server2=service, http://192.168.0.21:8080/my-project/, 20000

If you want to have fail over, set the properties as

capis.myproject=group, ordered, server1, server2
capis.myproject.server1=service, http://192.168.0.20:8080/my-project/, 20000
capis.myproject.server2=service, http://192.168.0.21:8080/my-project/, 20000

It's possible to combine load balancing and fail over. For example in the following code the invocation is
balanced between server1 and server2 and if one of both is down back-up will be used.

capis.myproject=group, random, system1, system2
capis.myproject.system1=group, ordered, server1, back-up
capis.myproject.system2=group, ordered, server2, back-up
capis.myproject.server1=service, http://192.168.0.20:8080/my-project/, 20000

javadoc/org/xins/common/service/GroupDescriptor.html
javadoc/org/xins/common/service/GroupDescriptor.html
javadoc/org/xins/common/service/GroupDescriptor.html
javadoc/org/xins/common/service/TargetDescriptor.html
javadoc/org/xins/common/service/TargetDescriptor.html
javadoc/org/xins/common/service/TargetDescriptor.html

XINS User Guide

29

capis.myproject.server2=service, http://192.168.0.21:8080/my-project/, 20000
capis.myproject.back-up=service, http://192.168.0.22:8080/my-project/, 20000

The fail-over is not always executed when an error occur, the condition upon which the fail-over is executed
are listed in the XINSServiceCaller Javadoc [javadoc/org/xins/client/XINSServiceCaller.html].

XINS types
the section called “Defining Input, Output.” shows you an example on how to use the types when defining
the function.

Predefined types.
XINS has some integrated types which facilitate the use of input and output parameters with the
implementation.

Table 4. XINS integrated types

type Java representation Example

_text java.lang.String hello world

_boolean boolean true

_int8 byte 25

_int16 short 2004

_int32 int 15

_int64 long 654654132135544566

_float32 float 25.6

_float64 double 3.14159

_date org.xins.common.types.standard.Date.Value20040514

_timestamp org.xins.common.types.standard.Timestamp.Value20040514115930

_property Map<String, String> upgrade%3Dtrue%26surname
%3Dde%2BHaan

_list org.xins.common.types.standard.List.Valueitem1%26item2%26item1

_set org.xins.common.types.standard.Set.Valueitem3%26item1%26item2

_base64 byte[] aGVsbG8=

_hex byte[] 546573746f

_url String http://www.google.com

_descriptor org.xins.common.service.Descriptordescriptor=group, random,
target1, target2

descriptor.target1=service,
http://127.0.0.1:8080/my-
project/, 8000

descriptor.target2=service,
http://192.168.0.1:8080/my-
project/, 8000

javadoc/org/xins/client/XINSServiceCaller.html
javadoc/org/xins/client/XINSServiceCaller.html

XINS User Guide

30

_xml org.xins.common.xml.Element <firstName>Alain</firstName>

You can find an example using all these types in the function demo\xins-project\apis
\allinone\spec\SimpleTypes.fnc.

Defined types
As seen in the section called “Defining Input, Output.”, it's also possible to define your own type. Here
is a list of the possible types to define in XINS:

• <pattern>: This type accepts a PERL5 regular expression and allows you to define a text that has
some constraints in its format.

• <enum>: This type must contain a list of <item> elements, each item element must have a value
attribute that contains the value of the item and can have a name attribute that contains the description
of the item. If the name is not defined it's set by default to the value of the item.

• <int8>, <int16>, <int32>, <int64>: These types define a number. They accept the optional
attributes min and max that can be used to set a minimum and a maximum value for the parameter.

• <float32>, <float64>: These types define a floating point number. They accept the optional
attributes min and max that can be used to set a minimum and a maximum value for the parameter.

• <properties>: This type is similar to the _property type but it allows you to specify a type for
the keys and the values of the property by using the optional attributes nameType and valueType.
If not specified the type _text will be used.

• <list> and <set>: These types are used to define a list of values in a parameter. The type of the
value can be restricted by using the optional attribute type. If not specified the default value for the
type attribute is _text.

• <xml>: This type is used to specify an XML paramter. It accept the attribute xsdLocation that can
be a URL or a local file in the spec directory.

• <base64>, <hex>: This type defines a binary. They accept the optional attributes min and max that
can be used to set a minimum and a maximum size in bytes for the binary.

You can find an example using some of these types in the function demo\xins-project\apis
\allinone\spec\DefinedTypes.fnc.

Shared types
If you have more than one API, you may want to reuse types defined in other APIs (for example EMail.typ,
Account.typ, LastName.typ, ...). Instead of copying the file to the new API, you can also point to this type.
This is done by using <api name>/<type name> in api.xml and in the function(s) specification.

For example:

 <type name="petstore/EMail"/>

 <param name="outputEMail" required="false" type="petstore/EMail">
 <description>An example of output shared type.</description>
 </param>

XINS User Guide

31

Grouping types
Param combos

It's also possible in XINS to defined a group of input or output parameters. There are 4 kinds of group:

• inclusive-or

If a group is inclusive-or then at least one of the parameters defined in the param-ref should
have a value.

• exclusive-or

If a group is exclusive-or then one and only one of the parameters defined in the param-ref
should have a value.

• all-or-none

If a group is all-or-none then either none of the of the parameters defined in the param-ref
should have a value or all.

• not-all

If a group is not-all then at least one of the parameters defined in the param-ref should not have
a value.

Example:

<input>
 <param name="birthYear" required="false" type="_int32">
 <description>The birth date's year.</description>
 </param>
 <param name="birthMonth" required="false" type="_int32">
 <description>The birth date's month.</description>
 </param>
 <param name="birthDay" required="false" type="_int32">
 <description>The birth date's day.</description>
 </param>
 <param name="birthCountry" required="false" type="_text">
 <description>The country where the person is born.</description>
 </param>
 <param name="birthCity" required="false" type="_text">
 <description>The city where the person is born.</description>
 </param>
 <param name="age" required="false" type="Age">
 <description>An example of input for a int8 type with a minimum and maximum.</description>
 </param>
 <!-- One of the two parameters must be filled but not both -->
 <param-combo type="exclusive-or">
 <param-ref name="birthYear" />
 <param-ref name="age" />
 </param-combo>
 <!-- At least one of the two parameters must be filled -->
 <param-combo type="inclusive-or">
 <param-ref name="birthCountry" />

XINS User Guide

32

 <param-ref name="birthCity" />
 </param-combo>
 <!-- These parameters must be filled together or not filled at all -->
 <param-combo type="all-or-none">
 <param-ref name="birthYear" />
 <param-ref name="birthMonth" />
 <param-ref name="birthDay" />
 </param-combo>
</input>

If the condition is not met, XINS will return a result with an _InvalidRequest error code if the request
does not match the input param-combo or an _InvalidReponse error code if the result does not
match the output param-combo.

You can find an example using the groups in the function demo\xins-project\apis\allinone
\spec\ParamCombo.fnc.

Attribute combos
It is also possible to defined similar constraint on attributes of elements defined in the data section (See
next chapter). This is done using the attribute-combo and the attribute-ref elements.

Example:

<data>
 <contains>
 <contained element="person" />
 </contains>
 <element name="person">
 <description>A person</description>
 <attribute name="birthCountry" required="false" type="_text">
 <description>The country where the person is borned.</description>
 </attribute>
 <attribute name="birth-city" required="false" type="_text">
 <description>The city where the person is borned.</description>
 </attribute>
 <attribute name="age" required="false" type="Age">
 <description>An example of input for a int8 type with a minimum and maximum.</description>
 </attribute>
 <!-- At least one of the two attributes must be filled -->
 <attribute-combo type="inclusive-or">
 <attribute-ref name="birthCountry" />
 <attribute-ref name="birth-city" />
 </attribute-combo>
 </element>
</data>

Combos based on values
It is also possible to define constraints based on the value of one parameter (and not only on whether the
parameter is set or not). This is done by added the value attribute to the param-ref element or attribute-
ref element for attribute-combo.

Example:

XINS User Guide

33

<input>
 <param name="salutation" required="true" type="Salutation">
 <description>The gender of the person.</description>
 </param>
 <param name="maidenName" required="false" type="_text">
 <description>The maiden name.</description>
 </param>
 <!-- If the salutation is Madam, the maiden name is required -->
 <param-combo type="inclusive-or">
 <param-ref name="salutation" value="Madam" />
 <param-ref name="maidenName" />
 </param-combo>
</input>

The description of the type associated with the param-combo is then a bit different:

• inclusive-or

If the parameter has the defined value then the second parameter is required.

• exclusive-or

If the parameter has the value then the other parameter should not be filled, otherwise the second
parameter is required.

• all-or-none

If the parameter has the value then the others parameters are required, otherwise the other parameters
should not be set.

• not-all

If the parameter has the value then the other parameters should not be set.

For a better understanding, look at the ParamComboValue.fnc function provided in the allinone
API.

It is also possible to have more than one param-ref with a value in the same param-combo.

The data section.
The data section defines a tree structure in the input or output section.

The specification
Example:

<data>
 <contains>
 <contained element="property" />
 </contains>
 <element name="property">
 <description>A property name and value.</description>
 <attribute name="name" required="true" type="PropertyName">

XINS User Guide

34

 <description>The property name.</description>
 </attribute>
 <attribute name="value" required="true" type="_text">
 <description>The property value.</description>
 </attribute>
 </element>
</data>

An element can also contain another element or text(pcdata) but not both.

To add an element in another element, add

<data>
 <contains>
 <contained element="property" />
 </contains>
 <element name="property">
 <description>A property name and value.</description>
 <contains>
 <contained element="product" />
 </contains>
 <attribute name="name" required="true" type="PropertyName">
 <description>The property name.</description>
 </attribute>
 </element>
 <element name="product">
...

If you want your element to contain PCDATA, use

<data>
 <contains>
 <contained element="property" />
 </contains>
 <element name="property">
 <description>A property name and value.</description>
 <contains>
 <pcdata />
 </contains>
 <attribute name="name" required="true" type="PropertyName">
 <description>The property name.</description>
 </attribute>
...

Since XINS 1.1.0, it's also possible to include more than one element in the data section:

<data>
 <contains>
 <contained element="packet" />
 <contained element="letter" />
 </contains>
 <element name="packet">
 <description>The packet.</description>
 <attribute name="destination" required="true" type="_text">
 <description>The destination of the packet.</description>

XINS User Guide

35

 </attribute>
 </element>
 <element name="letter">
 <description>The letter.</description>
 <contains>
 <pcdata />
 </contains>
 <attribute name="destination" required="true" type="_text">
 <description>The destination of the letter.</description>
 </attribute>
 </element>
</data>

Attributes can also have a default value using the default attribute.

The implementation
The data section is translated into a Java object with the appropriate set methods. Once the object is created,
you can add them to the SuccessfulResult using provided add methods.

Example:

SuccessfulResult result = new SuccessfulResult();
Property myProperty = new Property();
myProperty.setName(myName);
myProperty.setValue(myValue);
result.addProperty(myProperty);
return result;

If you had specified that your element could contain another element, the Property class would also
have a addProduct(Product) method.

If you had specified that your element could contain a text, the Property class would also contain a
pcdata(String) method.

The result
To view what kind of result to expect from a data section, we will define an example in the specification
of the function.

<output-data-example>
 <element-example name="property">
 <attribute-example name="name">upgrade</attribute-example>
 <attribute-example name="value">true</attribute-example>
 </element-example>
 <element-example name="property">
 <attribute-example name="name">surname</attribute-example>
 <attribute-example name="value">Doe</attribute-example>
 </element-example>
</output-data-example>

The resulting XML from XINS would then be

<result>

XINS User Guide

36

 <data>
 <property name="upgrade" value="true" />
 <property name="surname" value="Doe" />
 </data>
</result>

If your element accepted PCDATA, you can set a value by adding <pcdata-example>My value</
pcdata-example> before the <attribute-example>.

You can find some examples of the output data section in the functions demo\xins-project\apis
\allinone\spec\DataSection.fnc and demo\xins-project\apis\allinone\spec
\DataSection2.fnc.

Data section for the input
Since XINS 1.1.0 it's also possible to send a data section for the request. The definition of the data section
is similar to the definition for the output section except that it must be done in the input section. The
definition of the example is done using the <input-data-example> element.

This allows you to send complex structures with XINS in the request.

The framework will generate some extra objects and methods to get the values of the input data section.
Here is an example:

import java.util.Iterator;
...
Iterator itAddresses = request.listAddress().iterator();
while (itAddresses.hasNext()) {
 Request.Address nextAddress = (Request.Address) itAddresses.next();
 System.out.println(nextAddress.getPostcode());
}

An example is provided with XINS in the function demo\xins-project\apis\allinone\spec
\DataSection3.fnc.

Since XINS 1.5.0, if you are using Java 1.5 and deploying on a Java 1.5 application server, you can also
benefit from the Java generics feature as demontrated at the end of the next section.

Data section on the client side
On the client side the data section is retreived as an org.xins.common.xml.Element object
(javadoc [javadoc/org/xins/common/xml/Element.html]). To get the values in the returned data section,
use the methods provided in the Element class such as getAttribute(String localName) or
getChildElements(String name).

If you want to send a data section as input, you will need to create an
org.xins.common.xml.Element (javadoc [javadoc/org/xins/common/xml/Element.html]) for
example by using the org.xins.common.xml.ElementBuilder (javadoc [javadoc/org/xins/
common/xml/ElementBuilder.html]) class. Then you can pass this object to the CAPI call method or to
the generated Request object.

Since XINS 1.3.0, the methods and objects are also generated on the client side for the data section. They
are generated the same way as they are on the client side. For example, if you want to send a list of address
and receive a list of properties, this will look like this:

javadoc/org/xins/common/xml/Element.html
javadoc/org/xins/common/xml/Element.html
javadoc/org/xins/common/xml/Element.html
javadoc/org/xins/common/xml/Element.html
javadoc/org/xins/common/xml/ElementBuilder.html
javadoc/org/xins/common/xml/ElementBuilder.html
javadoc/org/xins/common/xml/ElementBuilder.html

XINS User Guide

37

• For the request:

import com.mycompany.myapi.capi.MyFunctionRequest;
...
MyFunctionRequest request = new MyFunctionRequest();
MyFunctionRequest.Address address1 = new MyFunctionRequest.Address();
address1.setCompany("McDo");
address1.setPostcode("12345");
request.addAddress(address1);

• For the result:

import java.util.Iterator;
import com.mycompany.myapi.capi.MyFunctionResult;
...
MyFunctionResult result = capi.callMyFunction(...);
Iterator itProperties = result.listProperty().iterator();
while (itProperties.hasNext()) {
 MyFunctionResult.Property nextProperty = (MyFunctionResult.Property) itProperties.next();
 String propertyName = nextProperty.getName();
 String propertyValue = nextProperty.getValue();
 System.out.println(propertyName + ": " + propertyValue);
}

If you are using Java 1.5 or higher and did not set the build.java.version property to a lower version,
the generated classes will use the generics feature added to the Java language since Java 1.5. This will
simplified your code of using the code:

import com.mycompany.myapi.capi.MyFunctionResult;
...
MyFunctionResult result = capi.callMyFunction(...);
for (MyFunctionResult.Property nextProperty : result.listProperty()) {
 String propertyName = nextProperty.getName();
 String propertyValue = nextProperty.getValue();
 System.out.println(propertyName + ": " + propertyValue);
}

Function accesses
XINS includes a way to set some permissions for the functions using ACLs and also a way to disable/
enable a function.

ACLs
The ACLs are used to restrict the access of a function based on the IP address from where the request
comes.

The ACLs are defined in the xins.properties file with the org.xins.server.acl property

The value is a dot comma separated list of the keywords allow or deny, the IP addresses specified as
ACL allowed or denied to access the function and the name of the function or * used for all functions.

An ACL is an IP address followed by / and the number of bits that should remains the same. For example
192.168.0.0/24 defines all IP addresses starting with 192.168.0.

XINS User Guide

38

Example:

org.xins.server.acl=allow 127.0.0.1 *; \
 allow 192.168.0.0/24 MyFunction

Per default, if an IP address is not specified in the list then the access is denied. If an IP address is specified
twice then the first rule will apply. If you specify /0 after an IP address then all IP address will match.

Example:

org.xins.server.acl=allow 127.0.0.1 *; \
 deny 192.168.0.21 _GetSettings; \
 allow 192.168.0.21 _*; \
 allow 192.168.2.0/24 _*; \
 allow 0.0.0.0/0 _GetVersion; \
 allow 192.168.0.0/24 MyFunction

In this example, IP addresses starting with 192.168.0. will be able to access MyFunction, the IP address
192.168.0.21. will also be able to access the meta functions except the _GetSettings meta function.
All IP addresses starting with 192.168.2. will be able to access the meta functions. Everybody will be able
to access the _GetVersion meta function.

Since XINS 1.1.0, the keyword file is also accepted with as second argument the location of the file
containing the permissions. The specified file should be of a special format. The lines should start with
allow, deny or file. If the line start with allow or deny it should be followed by the ACL and the function as
shown in the previous example. If the line starts with file, it should be followed by the location of another
acl premission file. Empty lines, lines containing only spaces and lines starting with # are ignored. The
ACL files will be monitored for changes every org.xins.server.config.reload seconds and
will be reloaded when the meta function _ReloadProperties is invoked.

Example:

org.xins.server.acl=allow 194.134.168.0/24 _*;\
 file /usr/conf/myApp.acl

myApp.acl:

allow 194.134.168.0/24 *
deny 194.134.32.0/24 _*
allow 194.134.32.0/24 *

comment...
allow 212.129.129.120 GetKey

Since XINS 2.1, it is possible to allow or deny a call based on the calling convention used. To do it add
after the name or the pattern of the function, the name or the regular expression pattern of the calling
convention you want to allow or deny.

For example:

org.xins.server.acl=allow 194.134.168.0/24 _* _xins-std|_xins-xslt;\
 deny 0.0.0.0/0 _*;\
 deny 0.0.0.0/0 * _xins-soap

allows the meta functions to be called only using the _xins-std or _xins-xslt calling conventions for the
given IP range and denies any call using the _xins-soap calling convention.

XINS User Guide

39

Enable/Disable a function
It's also possible to enable or disable a function. By default all functions are enabled.

To disable a function, request the following URL: http://API_PATH?
_function=_DisableFunction&functionName=MyFunction

To re-enable the function, request the URL: http://API_PATH?
_function=_EnableFunction&functionName=MyFunction

The links to enable or disable a function are provided on the test form generated with the specification
documentation.

HTTPS
It's also possible to use HTTPS as communication layer to call a XINS API. To do it, you just need to
configure the HTTP server (such as Apache) or the servlet container (such as Tomcat) with the correct
settings.

For more information on setting up the server, read the following articles:

• Configuring Tomcat 4.0 to use HTTPS [http://www.dga.co.uk/customer/
publicdo.nsf/0/2B4063F90912CC5D85256CB00007888B?OpenDocument]

• Tomcat 4.0 SSL configuration How-To [http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-
howto.html]

• How can I support HTTPS (SSL) in a servlet? [http://www.jguru.com/faq/view.jsp?EID=53931]

Note that HTTPS is a supported protocol on the client side only since XINS 1.3.0.

The meta functions
When you're starting a XINS server, a set of meta functions are already available. We just saw in the
Enable/Diable section the first two _DisableFunction and _EnableFunction. Note that all meta
functions start with an underscore.

Table 5. XINS Meta functions

Name Description

_NoOp No operation: This meta function does nothing but
maybe useful to monitor if the server is up or down
or the response time of the server.

_GetVersion Get the running version of xml-enc, XINS, Java and
of the API if defined.

_GetSettings Returns the properties as set in the runtime
property file and the Java properties as returned by
System.getProperties().

_GetStatistics Returns the amount of memory used and for
each function, the number of successful call, and
unsuccessful call with the response time (min, max,
last, average).

http://www.dga.co.uk/customer/publicdo.nsf/0/2B4063F90912CC5D85256CB00007888B?OpenDocument
http://www.dga.co.uk/customer/publicdo.nsf/0/2B4063F90912CC5D85256CB00007888B?OpenDocument
http://www.dga.co.uk/customer/publicdo.nsf/0/2B4063F90912CC5D85256CB00007888B?OpenDocument
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-howto.html
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-howto.html
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/ssl-howto.html
http://www.jguru.com/faq/view.jsp?EID=53931
http://www.jguru.com/faq/view.jsp?EID=53931

XINS User Guide

40

This function may have a parameter reset=true
that performs a reset of the statistics at the same
time.

This function may also have a parameter
detailed=true that displays the statistics per
error code for the unsuccessful results.

_ResetStatistics Resets the statistics.

_ReloadProperties Reloads the XINS properties file.

_CheckLinks Checks that the API can access the other API's or
URL it's using.

This meta function will test the URLs set in the
runtime properties file where the property is defined
in the impl.xml file with the type _url or
_descriptor.

_GetFunctionList Returns the list of the functions.

_DisableFunction Disables the function passed in the functionName
input parameter.

_EnableFunction Enables the function passed in the functionName
input parameter.

_DisableAPI Disables the API by returning HTTP 503 to all
requests.

_EnableAPI Re-enables the API that was disabled.

_WSDL Returns the WSDL [http://www.w3.org/TR/wsdl]
of the API.

_SMD Returns the Simple Method Description [http://
dojo.jot.com/SMD] of the API.

Management
As XINS APIs are standard Servlets, most of the management can be done by the Servlet container or
the J2EE application server. Most of the management specific to the API is done by editing the runtime
property file. See .

JMX
JMX MBeans have been added since XINS 1.5.0 to have the possibility to manager the API using standard
management tools sush as HP Openview or the JConsole included in the JDK.

The following information are available through the JMX interface:

• Statistics

• Bootstrap properties

• Runtime properties

• XINS version running

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://dojo.jot.com/SMD
http://dojo.jot.com/SMD
http://dojo.jot.com/SMD

XINS User Guide

41

• API version

• Startup time

• The list of the functions

You can also perform the following actions:

• noOp(): Function that does nothing but can be used to check if the API is up.

• reloadProperties(): Reload the runtime properties.

Log4J HierarchyDynamicMBean is also registered as MBean.

The object names used for both MBeans starts with org.xins.server.<api name>.

By default, JMX is disabled. To enable it set the runtime property org.xins.server.jmx=true.

To have an overview execute xins run-myproject with Java 1.5 or later and run the jconsole.exe
located in jdk\bin.

Versioning
You can also set a version to your API.

To set the API version create a .version.properties file in the project directory with the 2
following properties defined: version.major and version.minor.

The version will be apply to all APIs. If you want a specific version for one of the API, create a
.version.properties in the apis\<api name> directory.

Shared instance
In XINS the functions are initialised when you start the server, the initialisation also passes the properties
defined in xins.properties to the function. XINS has the notion of shared instance which is an object
created and initialized in a similar way as functions are. Furthermore this object is passed as an instance
to all the defined functions of the API.

You can think about the following situations:

• You want to access a database or an access to LDAP with the access properties set in
xins.properties.

• You want to share data between functions.

To add a shared instance to the API add in the impl.xml file <instance
name="_sharedObject" getter="getSharedObject" class="SharedObject" />.

Now you need to create a class SharedObject in the implementation package that extends
the org.xins.common.manageable.Manageable class (javadoc [javadoc/org/xins/common/
manageable/Manageable.html]).

Now you could use this object by calling in the call(Request request) method

// Get some data from the shared object

javadoc/org/xins/common/manageable/Manageable.html
javadoc/org/xins/common/manageable/Manageable.html
javadoc/org/xins/common/manageable/Manageable.html

XINS User Guide

42

String firstName = _sharedObject.getFirstName(request.getLastName());

An example is provided in the allinone project.

Calling Convention
Since version 1.0.1, XINS has the notion of calling convention.

A calling convention specified the format of the request and the format of the result. You can see it as a
communication protocol.

XINS 1.1.0 includes the following calling conventions: _xins-std, _xins-old and _xins-xml.

XINS 1.2.0 includes the _xins-xslt calling convention and allows to define it's own custom calling
convention.

XINS 1.3.0 includes the _xins-soap and _xins-xmlrpc calling conventions.

XINS 1.4.0 includes the automatic detection of the calling convention meaning that if no _convention
parameter is sent and no custom calling convention is defined, XINS will try to detect the calling
convention to call based on the format of the request.

XINS 1.5.0 includes the XINS front-end calling convention: xinsff. A front-end framework user guide
[frontend/index.html] is also included in the release. It is also possible since this version possible to define
the supported HTTP methods for a custom calling convention. This can be useful if you want to define a
REST [http://en.wikipedia.org/wiki/REST] calling convention. A new example was also added that uses
a MultipartCallingConvention to receive binaries files.

XINS 2.0 includes the _xins-json and _xins-jsonrpc calling conventions. The _xins-old
calling convention has been removed in this release.

XINS 2.1 includes the _xins-soap-map calling convention.

How to define the calling convention
If nothing is specified the standard calling convention (as in XINS 1.0.0) is used.

If the calling convention can be set, by adding the _convention parameter to the URL with the value
of the calling convention as argument.

The default calling convention for an API can be specified in the impl.xml file by adding the calling-
convention element. For example:

<impl>
 <calling-convention name="_xins-xml" />
</impl>

Standard calling convention
The standard calling convention or also named POX-RPC calling convention is the default calling
convention used by xins. If no calling-convention is included in the impl.xml file and no
_convention parameter is passed in the request, XINS will expect an request using this convention and
return a result using this convention. The property value for the POX-RPC calling convention is _xins-
std. This calling convention is also known as the standard calling convention.

frontend/index.html
frontend/index.html
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST

XINS User Guide

43

This examples provided in this document are using the POX-RPC calling convention. The examples
generated with the specdocs and the test forms are also using this calling convention.

A document (link [protocol/index.html]) is also provided in the docs\protocol directory that contains
the specifications of this calling convention.

XSLT calling convention
The property value for the XSLT calling convention is _xins-xslt. The request is similar to the
standard calling convention (using URL). The result returned is the result of the processing of the XML
normally returned with the standard calling convention with a specified XSLT file. This means that the
result could be a HTML page or XML or plain text or binary depending on the XSLT transformation.

The location of the XSLT stylesheets is set using the runtime property templates.<api
name>.xins-xslt.source. This property refers to the directory where the XSLT stylesheets can be
found. The stylesheets then must have the name of the function with the .xslt extension.

You can also pass the location of the template in the request with the _template parameter. This will
override the previous runtime property. The location should be relative to the path or URL specified in the
runtime property templates.<api name>.xins-xslt.parameter.prefix. If this property
is not set the _template parameter is not allowed.

The XSLT calling convention caches the templates for better performances. You can clear the cache by
passing the _cleartemplatecache=true parameter. You can also disable the cache by setting the
templates.cache runtime property to false.

SOAP calling convention
The property value for he SOAP calling convention is _xins-soap. The SOAP calling convention
allows you to call the API using SOAP. SOAP is a W3C [http://www.w3.org/TR/soap/] standard
communication protocol for Web Services. The SOAP calling convention allows to provide to external
software and companies a way to communicate using a standard protocol. The SOAP calling convention
allows also to use XINS with WS-BPEL [http://www.oasis-open.org/committees/wsbpel/charter.php] or
JBI [http://java.sun.com/integration/].

Example of an input request:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns0="urn:allinone">
 <soap:Body>
 <ns0:DataSection3Request>
 <inputText>Hello</inputText>
 <data>
 <address company="McDo" postcode="1234" />
 <address company="Drill" postcode="4567" />
 </data>
 </ns0:DataSection3Request>
 </soap:Body>
</soap:Envelope>

SOAP is often associated with a WSDL file that describes the Web Service. XINS can generate this
WSDL file by executing xins wsdl-<api name>. This generated file is located in the directory build
\webapps\<api>. Note that the generated WSDL file also contain the XML Schema for the standard
types, the defined types, the required fields or the optional fields. By default the endpoint defined in

protocol/index.html
protocol/index.html
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.oasis-open.org/committees/wsbpel/charter.php
http://www.oasis-open.org/committees/wsbpel/charter.php
http://java.sun.com/integration/
http://java.sun.com/integration/

XINS User Guide

44

the WSDL is the first environment defined in the environment XML file or if there is no file defined
http://localhost/<api name>/?_convention=_xins-soap. You can set the endpoint
by passing the command line argument -Dwsdl.enpoint or by setting the wsdl.endpoint property in
build.properties file. You can then use this generated file in the Web Services client sush as C#,
Visual Basic, PHP, Perl.

The SOAP calling convention and the generation of the WSDL have been developed based the WS-
I Basic Profile Version 1.1 [http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html]to ensure
better compatibility with other frameworks.

XML calling convention
The property value for the XML calling convention is _xins-xml. In this case only HTTP POST are
accepted. The returned output is the same as the standard calling convention. Example of an input request:

<request function="functionName">
 <param name="paramName">paramValue</param>
 <data>
 <product name="something1" price="12.2" />
 <product name="something2" price="23.5" />
 </data>
</request>

XML-RPC calling convention
The property value for the XML-RPC calling convention is _xins-xmlrpc. XML-RPC is a
specification used to remote procedure call using XML over HTTP. XML-RPC has client frameworks in
a lot of languages including AppleScript, J2ME, Ruby.

Example of an input request:

<?xml version="1.0"?>
<methodCall>
 <methodName>SimpleTypes</methodName>
 <params>
 <param><value><struct><member>
 <name>inputBoolean</name>
 <value><boolean>0</boolean></value>
 </member></struct></value></param>
 </params>
</methodCall>

For more information on XML-RPC, visit the web site at http://www.xmlrpc.com/.

JSON-RPC calling convention
The property value for the JSON-RPC calling convention is _xins-jsonrpc. JSON-RPC is a
specification used to remote procedure call in different Ajax frameworks such as the DOJO toolkit. The
specification of JSON-RPC are located at http://json-rpc.org/wiki/specification. Both specification version
(1.0 and 1.1) are supported by the JSON-RPC calling convention.

Example of an input request for JSON-RPC 1.0:

{"method": "ResultCode", "params": ["Hallo"], "id": null}

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.xmlrpc.com/
http://json-rpc.org/wiki/specification

XINS User Guide

45

Examples of ouput result for JSON-RPC 1.0:

{"result": {"outputTest": "Hallo"}, "error": null, "id": null}

{"result": null, "error": "AlreadySet", "id": null}

Example of an input request for JSON-RPC 1.1:

{"version": "1.1", "method": "ResultCode", "params": {"inputText": "Hallo"}}

http://www.myserver.com/path/ResultCode?inputText=Hallo

Examples of ouput result for JSON-RPC 1.1:

{"version": "1.1", "result": {"outputTest": "Hallo"}}

{"version": "1.1", "error": {"name": "AlreadySet", "code": 123, "message": "The parameter has already been given."}}

For more examples, visit the web site at http://json-rpc.org/.

The automatic detection of the matching calling convention for a request will only find request using the
1.1 specifications.

JSON calling convention
The property value for the JSON calling convention is _xins-json. This calling convention is based
on the Yahoo! JSON protocol specified at http://developer.yahoo.com/common/json.html. This includes
the support for the callback parameter.

Example of an input request:

http://www.myserver.com/path/ResultCode?inputText=Hallo&output=json

Examples of ouput result:

{"outputTest": "Hallo"}

Example of an input request with callback:

http://www.myserver.com/path/ResultCode?inputText=Hallo&output=json&callback=process

Examples of ouput result with callback:

process({"outputTest": "Hallo"})

This calling convention could be useful if you want to call the API from GWT [http://code.google.com/
webtoolkit/] (Google Web Toolkit).

SOAP-MAP calling convention
The property value for the SOAP-Map calling convention is _xins-soap-map. This calling convention
accepts SOAP requests and applies the same mapping for the request or the response as what is done in
the xins wsdl-to-api command.

This means that if you need to write a web service using a pre-defined WSDL, you can do it by executing
xins wsdl-to-api command and pass _convention=_xins-soap-map in the URL query
parameters.

http://json-rpc.org/
http://developer.yahoo.com/common/json.html
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/

XINS User Guide

46

The calling convention will copy the Envelop and Body XML elements as what received in the
request, try to keep the same namespaces prefix and map data element attributes to sub-elements. If
after the transformation not all parameters are detected and mapped correctly, you can also extend the
org.xins.server.SOAPMapCallingConvention and implement you own parsing on specific parts or create
your specific response.

Custom calling convention
To create your own calling convention, you need to extend the
org.xins.server.CustomCallingConvention class (javadoc [javadoc/org/xins/server/
CustomCallingConvention.html]).

This class has two abstract methods, convertRequestImpl and convertResultImpl, that you
must implement.

Note that the CustomCallingConvention extends the Manageable class, this means that you can
read the bootstrap settings in the bootstrapImpl method and the runtime properties in the initImpl
method.

To define the calling convention in the impl.xml, you need to add an extra argument class to the
calling-convention element. For example:

<impl>
 <calling-convention name="my-convention" class="com.mycompany.myproject.MyConvention" />
</impl>

You can also define more than one calling convention, in this case one calling convention must have the
attribute default="true".

Example:

<impl>
 <calling-convention name="_xins-std" default="true" />
 <calling-convention name="my-convention" class="com.mycompany.myproject.MyConvention" />
</impl>

More information on how to create your own calling convention is provided in the calling convention
primer [http://xins.sourceforge.net/ccprimer.html].

You can also look at the fileupload API provided in the examples that defines a
CustomCallingConvention in order to upload binaries files.

Examples calling convention
Several custom calling conventions are provided in the examples. Some of them are not included in the
core libraries so if you want to use them, you will need to copy the file to your project.

Here is a list of the custom calling convention used in the examples:

• MultipartCallingConvention is defined in the fileupload API. This calling convention
allows to receive files according to the HTTP file upload protocol. This calling convention requires the
commons-fileupload.jar included in apis\fileupload\lib directory.

• RESTCallingConvention is defined in the rest API. This calling convention only accepts strict
REST [http://en.wikipedia.org/wiki/Representational_State_Transfer] requests.

javadoc/org/xins/server/CustomCallingConvention.html
javadoc/org/xins/server/CustomCallingConvention.html
javadoc/org/xins/server/CustomCallingConvention.html
http://xins.sourceforge.net/ccprimer.html
http://xins.sourceforge.net/ccprimer.html
http://xins.sourceforge.net/ccprimer.html
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

XINS User Guide

47

• The petstore example uses the FrontendCallingConvention which is a custom calling
convention added to the core. More information about this calling convention can be found in the XINS
Front-end Framework manual [frontend/index.html].

Utility classes
XINS also contains in the org.xins.common package, a set of classes that could be useful for the
implementation of your API.

Note also that the following APIs are distributed with all XINS applications: HTTPCore [http://
hc.apache.org/httpcomponents-core-ga/index.html], HTTPClient [http://hc.apache.org/httpcomponents-
client-ga/index.html], commons logging [http://jakarta.apache.org/commons/logging/], commons
codec [http://jakarta.apache.org/commons/codec/], Log4j API [http://logging.apache.org/log4j/docs/
index.html], json [http://www.json.org/java/index.html], logdoc [https://github.com/znerd/logdoc], and
xmlenc [http://xmlenc.sourceforge.net/]. You can then use these APIs without adding any dependency
element in the impl.xml file.

• Spec package

The spec package is located in org.xins.common.spec (javadoc [javadoc/org/xins/common/spec/
index.html]). This package contains classes that provide information on the specification of the API.
You can get the specification from the client side by using capi.getAPISpecification() and
from the server side using api.getAPISpecification(). The method will return a APISpec
object from which you will be able to get all the specification of the API. You can get information sush
as the list of the functions, the type of a parameter in a function, the error code returned by a function.

• HTTPServiceCaller

The org.xins.common.http.HTTPServiceCaller (javadoc [javadoc/org/xins/common/http/
HTTPServiceCaller.html]) is a class that is used to get information from a URL. This class also supports
load-balancing and fail-over via the GroupDescriptor such as the XINSServiceCaller does. This class
has a call method that requires a HTTPCallRequest as input where you can specify the method to
call the URL, the parameters of the URL and the behaviour for the fail-over, and this call returns a
HTTPCallResult where you can get the returned text as String, byte[] or as InputStream as well as the
HTTP code returned.

• ExpiryFolder

The org.xins.common.collections.expiry.ExpiryFolder (javadoc [javadoc/org/xins/common/
collections/expiry/ExpiryFolder.html]) class allows you to store some properties (key & value pairs) for
a limited amount of time. When a property is added, it has the maximum time to live. If the property is
not requested during this time then the property is removed. If the property is requested using the get()
method then time to live of this property is set again to the maximum.

The ExpiryFolder is particularly interesting if you want to implement caching of the result. More for
look at the online article [http://xins.sf.net/resultcaching.html] explaining how to do result caching for
a method.

• BeanUtils

The org.xins.common.BeanUtils (javadoc [javadoc/org/xins/common/BeanUtils.html]) class allows to
copy the properties of a POJO to another POJO. It can useful to fill a generated Request object on the
client side or a SuccesfulResult object on the server side. Especially if you use libraries such as JPA
(Java Persistence API) or the Spring Framework. It is also useful when you want to forward a request
or when the result of a function call should be used as input to call another function.

frontend/index.html
frontend/index.html
frontend/index.html
http://hc.apache.org/httpcomponents-core-ga/index.html
http://hc.apache.org/httpcomponents-core-ga/index.html
http://hc.apache.org/httpcomponents-core-ga/index.html
http://hc.apache.org/httpcomponents-client-ga/index.html
http://hc.apache.org/httpcomponents-client-ga/index.html
http://hc.apache.org/httpcomponents-client-ga/index.html
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/logging/
http://jakarta.apache.org/commons/codec/
http://jakarta.apache.org/commons/codec/
http://jakarta.apache.org/commons/codec/
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html
http://www.json.org/java/index.html
http://www.json.org/java/index.html
https://github.com/znerd/logdoc
https://github.com/znerd/logdoc
http://xmlenc.sourceforge.net/
http://xmlenc.sourceforge.net/
javadoc/org/xins/common/spec/index.html
javadoc/org/xins/common/spec/index.html
javadoc/org/xins/common/spec/index.html
javadoc/org/xins/common/http/HTTPServiceCaller.html
javadoc/org/xins/common/http/HTTPServiceCaller.html
javadoc/org/xins/common/http/HTTPServiceCaller.html
javadoc/org/xins/common/collections/expiry/ExpiryFolder.html
javadoc/org/xins/common/collections/expiry/ExpiryFolder.html
javadoc/org/xins/common/collections/expiry/ExpiryFolder.html
http://xins.sf.net/resultcaching.html
http://xins.sf.net/resultcaching.html
javadoc/org/xins/common/BeanUtils.html
javadoc/org/xins/common/BeanUtils.html

XINS User Guide

48

If the names of the properties are different, you can also provide a mapping of the properties name as
parameter, element name or attribute name. The method will also convert the types whenever possible.

• FileWatcher

The org.xins.common.io.FileWatcher (javadoc [javadoc/org/xins/common/io/FileWatcher.html]) class
allows you to monitor a file for changes. You just need to specify the file to monitor, the interval between
two checks of the file and the listener that will be notified when the file has changed. Don't forget to
invoke the start() method to start the monitoring of the file.

• ElementList

The org.xins.common.xml.ElementList (javadoc [javadoc/org/xins/common/xml/ElementList.html])
class allows you to list and get sub DOM elements of a DOM element. As described in the Javadoc,
this class has several advantages over NodeList.

• Optimized classes

The org.xins.common.text (javadoc [javadoc/org/xins/common/text/URLEncoding.html]) package
contains classes for URL encoding, URL decoding or creation of regular expression patterns.

Ant tasks
Before using the tasks, you need to define them using the following lines:

 <property environment="env" />
 <taskdef resource="org/xins/common/ant/antlib.xml" classpath="${env.XINS_HOME}/build/xins-common.jar:${env.XINS_HOME}/lib/xmlenc.jar" />

callxins task
The callxins task is used to call a xins API. The result of the call is then stored in properties.

Example:

<callxins function="MyFunction"
 apiLocation="http://localhost:8080/myproject/"
 prefix="myapi">
 <param name="gender" value="m" />
 <param name="personLastName" value="Lee" />
</callxins>

This task will call the MyFunction function of the myproject API. The result will be store in the
myapi.message Ant property as MyFunction just returns one output parameter named message.

The prefix attribute is optional.

If the function returns a data section, the properties will be set as described in the Ant XML property task
[http://ant.apache.org/manual/CoreTasks/xmlproperty.html].

xins task
The xins task is used to execute a xins target. If the specifications have changed this target will take care
of recreating the build.xml and calling the requested target.

javadoc/org/xins/common/io/FileWatcher.html
javadoc/org/xins/common/io/FileWatcher.html
javadoc/org/xins/common/xml/ElementList.html
javadoc/org/xins/common/xml/ElementList.html
javadoc/org/xins/common/text/URLEncoding.html
javadoc/org/xins/common/text/URLEncoding.html
http://ant.apache.org/manual/CoreTasks/xmlproperty.html
http://ant.apache.org/manual/CoreTasks/xmlproperty.html

XINS User Guide

49

If you execute the script from another directory, you will need to define the projectdir optional
attribute.

Example:

<xins api="myproject" target="specdocs" />

Note that the api attribute is optional:

<xins target="create-api" />

XINS targets
Here is a description of the most useful targets.

Table 6. XINS targets

Target name Description

run-<api> Runs the WAR for the API.

war-<api> Creates the WAR for the API.

specdocs-<api> Generates all specification documentation for the
API.

javadoc-api-<api> Generates Javadoc API documentation for the API.

server-<api> Generates the war file, the Javadoc API
documentation for the server side and the specdocs
for the API.

jar-<api> Generates and compiles the Java classes for the
client-side API.

javadoc-capi-<api> Generates Javadoc API docs for the client-side API.

client-<api> Generates the specdocs, the Javadoc API docs for
the client side, the CAPI jar file and a Zip file
containing all of this.

clean-<api> Cleans everything for the API.

rebuild-<api> Regenerates everything for the API.

all-<api> Generates everything for the API.

wsdl-<api> Generates the WSDL of the API.

stub-<api> Generates the API stub.

test-<api> Generates the unit tests if needed and tests the API.

javadoc-test-<api> Generates Javadoc for the unit test of the API.

opendoc-<api> Generates the specification of the API in open
document format.

all Generates everything.

clean Removes all generated files.

specdocs Generates all specification docs.

clients Generates client-<api> for all APIs.

javadoc-capis Generates the Javadoc for all CAPIs.

XINS User Guide

50

javadoc-apis Generates the Javadoc for all APIs.

wars Creates the WARs for all APIs.

tests Runs the unit tests of the APIs that have tests.

create-api Generates a new api specification file.

create-function Generates a new function specification file.

create-rcd Generates a new error code specification file.

create-type Generates a new type specification file.

create-example Generates a new example for a function.

create-logdoc Generates the basic logdoc files for an API.

version or -version Prints the version of XINS.

help Prints the possible targets along with the possibles
APIs.

XINS tools
XINS can also execute several tools that can improve the quality of your API.

To use it, execute xins <tool target>.

The target will ask you upon which API you want to execute the tool. You can also pass the name of
the API as a parameter name using -Dapi.name=<api name> or add an api.name property to the
build.properties file.

You need to have the required libraries in the XINS_HOME\lib directory, unless specified otherwise.

• xins help-tools

Description: Prints the list of the tool targets with its description and its required or optional build
properties.

• xins download-tools

Description: Downloads and installs the required libraries needed to execute the tools.

• xins java2html

Description: Generates HTML pages which contain the source code of the API.

Required library: j2h.jar [http://www.ibiblio.org/maven2/java2html/j2h/1.3.1/j2h-1.3.1.jar]

Web site: http://www.java2html.de/

Result location: build\j2h\<api name>\index.html

• xins pmd

Description: Analyses the source code of the API. The default rules set is rulesset/
basic.xml,rulesset/unusedcode.xml. You can override it by settting the pmd.rules
property.

Required library: pmd.jar [http://www.ibiblio.org/maven2/pmd/pmd/3.7/pmd-3.7.jar] and jaxen [http://
www.ibiblio.org/maven2/jaxen/jaxen/1.1-beta-11/jaxen-1.1-beta-11.jar]

http://www.ibiblio.org/maven2/java2html/j2h/1.3.1/j2h-1.3.1.jar
http://www.ibiblio.org/maven2/java2html/j2h/1.3.1/j2h-1.3.1.jar
http://www.java2html.de/
http://www.ibiblio.org/maven2/pmd/pmd/3.7/pmd-3.7.jar
http://www.ibiblio.org/maven2/pmd/pmd/3.7/pmd-3.7.jar
http://www.ibiblio.org/maven2/jaxen/jaxen/1.1-beta-11/jaxen-1.1-beta-11.jar
http://www.ibiblio.org/maven2/jaxen/jaxen/1.1-beta-11/jaxen-1.1-beta-11.jar
http://www.ibiblio.org/maven2/jaxen/jaxen/1.1-beta-11/jaxen-1.1-beta-11.jar

XINS User Guide

51

Web site: http://pmd.sourceforge.net/

Result location: build\pmd\<api name>\index.html

• xins checkstyle

Description: Checks the source code for compliance to the Java
coding convention [http://xins.sourceforge.net/XINS%20Java%20Coding%20Conventions%20-
%20v1.0%20-%20July%202006.pdf]. It also perform some analisys of the code.

Required library: checkstyle.jar [http://www.ibiblio.org/maven/checkstyle/jars/checkstyle-4.1.jar]
commons-beanutils.jar [http://www.ibiblio.org/maven/commons-beanutils/jars/commons-
beanutils-1.7.0.jar] antlr.jar [http://www.ibiblio.org/maven/antlr/jars/antlr-2.7.6.jar]

Web site: http://checkstyle.sourceforge.net/

Result location: build\checkstyle\<api name>\index.html

• xins coverage

Description: Reports on the coverage of the API code by the unit tests.

Required libraries: cobertura.jar [http://www.ibiblio.org/maven2/cobertura/cobertura/1.8/
cobertura-1.8.jar], asm.jar [http://www.ibiblio.org/maven2/asm/asm/2.2.1/asm-2.2.1.jar]

Web site: http://cobertura.sourceforge.net/

Result location: build\coverage\<api name>\index.html

• xins emma

Description: Reports on the coverage of the API code by the unit tests using the EMMA code coverage
library.

Required libraries: emma.jar [http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/emma/2.0.5312/
emma-2.0.5312.jar], emma_ant.jar [http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/
emma_ant/2.0.5312/emma_ant-2.0.5312.jar]

Web site: http://emma.sourceforge.net/

Result location: build\coverage\<api name>\index.html

• xins findbugs

Description: Analyses the code in order to indentify possible bugs. You will need to set the
findbugs.home=<findbugs directory> build property.

Required library: Install findbugs.zip [http://surfnet.dl.sourceforge.net/sourceforge/findbugs/
findbugs-1.1.1.zip].

Web site: http://findbugs.sourceforge.net/

Result location: build\findbugs\<api name>\index.html

• xins lint4j

Description: Analyses the code in order to indentify possible bugs.

http://pmd.sourceforge.net/
http://xins.sourceforge.net/XINS%20Java%20Coding%20Conventions%20-%20v1.0%20-%20July%202006.pdf
http://xins.sourceforge.net/XINS%20Java%20Coding%20Conventions%20-%20v1.0%20-%20July%202006.pdf
http://xins.sourceforge.net/XINS%20Java%20Coding%20Conventions%20-%20v1.0%20-%20July%202006.pdf
http://xins.sourceforge.net/XINS%20Java%20Coding%20Conventions%20-%20v1.0%20-%20July%202006.pdf
http://www.ibiblio.org/maven/checkstyle/jars/checkstyle-4.1.jar
http://www.ibiblio.org/maven/checkstyle/jars/checkstyle-4.1.jar
http://www.ibiblio.org/maven/commons-beanutils/jars/commons-beanutils-1.7.0.jar
http://www.ibiblio.org/maven/commons-beanutils/jars/commons-beanutils-1.7.0.jar
http://www.ibiblio.org/maven/commons-beanutils/jars/commons-beanutils-1.7.0.jar
http://www.ibiblio.org/maven/antlr/jars/antlr-2.7.6.jar
http://www.ibiblio.org/maven/antlr/jars/antlr-2.7.6.jar
http://checkstyle.sourceforge.net/
http://www.ibiblio.org/maven2/cobertura/cobertura/1.8/cobertura-1.8.jar
http://www.ibiblio.org/maven2/cobertura/cobertura/1.8/cobertura-1.8.jar
http://www.ibiblio.org/maven2/cobertura/cobertura/1.8/cobertura-1.8.jar
http://www.ibiblio.org/maven2/asm/asm/2.2.1/asm-2.2.1.jar
http://www.ibiblio.org/maven2/asm/asm/2.2.1/asm-2.2.1.jar
http://cobertura.sourceforge.net/
http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/emma/2.0.5312/emma-2.0.5312.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/emma/2.0.5312/emma-2.0.5312.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/emma/2.0.5312/emma-2.0.5312.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/emma_ant/2.0.5312/emma_ant-2.0.5312.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/emma_ant/2.0.5312/emma_ant-2.0.5312.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/emma/emma_ant/2.0.5312/emma_ant-2.0.5312.jar
http://emma.sourceforge.net/
http://surfnet.dl.sourceforge.net/sourceforge/findbugs/findbugs-1.1.1.zip
http://surfnet.dl.sourceforge.net/sourceforge/findbugs/findbugs-1.1.1.zip
http://surfnet.dl.sourceforge.net/sourceforge/findbugs/findbugs-1.1.1.zip
http://findbugs.sourceforge.net/

XINS User Guide

52

Required library: lint4j.jar [http://www.jutils.com/maven/lint4j/jars/lint4j-0.9.1.jar]

Web site: http://www.jutils.com/

Result location: build\lint4j\<api name>\lint4j-report.txt and build\lint4j
\<api name>\lint4j-report.xml

• xins jdepend

Description: Analyses the package dependency and generates design quality metrics.

Required library: jdepend.jar [http://www.ibiblio.org/maven/jdepend/jars/jdepend-2.9.1.jar] in the
ANT_HOME\lib directory.

Web site: http://clarkware.com/software/JDepend.html

Result location: build\jdepend\<api name>\index.html

• xins cvschangelog

Description: Generates the change log report of the API.

Required library: None but cvs should be installed.

Result location: build\cvschangelog\index.html

• xins glean

Description: Generates a Glean report for the API. Glean is a tool agregator that produce a feedback
repost about the source code. You will need to set the glean.home=<Glean directory> build property.
If not already provided, a apis\<api name>\glean.properties file is created that you can
customize to your wishes.

Required library: Install glean.zip [http://jbrugge.com/glean/glean-1.2.zip].

Web site: http://jbrugge.com/glean/

Result location: build\glean\index.html

• xins jmeter

Description: Generates JMeter [http://jakarta.apache.org/jmeter/] tests from the examples defined in the
functions.

Required library: None.

Web site: http://jakarta.apache.org/jmeter/

Result location: build\jmeter\<api name>\<api name>.jmx

• xins run-jmeter

Description: Runs the JMeter tests. You will need to the set jmeter.home=<jmeter directory> property.
You can set the jmeter.test property for the location of the tests without the extension. The default is
the location of the generated tests.

Required library: Install JMeter [http://jakarta.apache.org/jmeter/].

http://www.jutils.com/maven/lint4j/jars/lint4j-0.9.1.jar
http://www.jutils.com/maven/lint4j/jars/lint4j-0.9.1.jar
http://www.jutils.com/
http://www.ibiblio.org/maven/jdepend/jars/jdepend-2.9.1.jar
http://www.ibiblio.org/maven/jdepend/jars/jdepend-2.9.1.jar
http://clarkware.com/software/JDepend.html
http://jbrugge.com/glean/glean-1.2.zip
http://jbrugge.com/glean/glean-1.2.zip
http://jbrugge.com/glean/
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/

XINS User Guide

53

Web site: http://jakarta.apache.org/jmeter/

Result location: build\jmeter\<api name>\index.html

• xins maven

Description: Generates the Maven [http://maven.apache.org/] pom.xml file for the specified API.

Required library: None.

Web site: http://maven.apache.org/

Result location: apis\<api name>\pom.xml

• xins smd

Description: Generates the SMD [http://maven.apache.org/] (Simple Method Description) of the API.
You can set the destination of the API with the smd.endpoint property. The default is the first address
in the environment.xml file with ?_convention=_xins-jsonrpc.

Required library: None.

Result location: build\smd\<api name>.smd

• xins xsd-to-types

Description: Generates .typ files with the types defined in the given XML Schema files for the specified
API.

Parameters: xsd.dir - Directory containing the XML Schema files (*.xsd)

Required library: None.

Result location: apis\<api name>*.typ

• xins wsdl-to-api

Description: Generates an API specification based on a WSDL [http://www.w3.org/TR/wsdl] file or
URL.

Parameters: wsd.location - The location of the WSDL (local file or URL)

Required library: None.

Result location: apis\<api name>\api.xml apis\<api name>*.fnc apis\<api
name>*.typ apis\<api name>*.rcd

• xins webstart

Description: Generates a Java WebStart file (also called JNLP file) to run the API.

Required library: None.

Result location: build\webstart\<api name>.jnlp

Note you will need to sign the WAR file if you want to make the API available online.

• xins appengine

http://jakarta.apache.org/jmeter/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

XINS User Guide

54

Description: Generates a Google App Engine of the Web Service.

Required library: Google App Engine SDK.

Result location: build\webapps\<api name>

Performances
XINS performances are regularly measured. An old article about XINS performance [http://
xins.sourceforge.net/articles/performance.html] shows that XINS could be even faster than the
competition.

The number of logs written per call is one of the important factor that can slow down or increase the
performance of an API. You are advice to only logs necessary messages.

Since XINS 3.1, GZip compressed data are also accepted. If not already done, you are adviced to configure
the HTTP Server or the Servlet container to return compressed data.

If the Servlet container runs in a HTTP Server, it's better to configure the compression on the HTTP Server.

For Tomcat add to the server.xml <Connector> element the following attributes:
compression="on" compressionMinSize="2048" noCompressionUserAgents="gozilla, traviata"
compressableMimeType="text/html,text/xml,text/javascript,text/css,application/json"

Content of the XINS package
This chapter gives a description of the files and directories included in XINS package, so that you can
find the wanted information quicker.

Documentation
In the top directory of XINS, the following documents are available:

• README.html contains a quick description of XINS, links to the documentation and quick start to
run a small project.

• CHANGES contains the change logs between each releases.

• NOTES contains the release notes with the known bugs and the OS and Java version with which XINS
has been tested.

The docs directory contains the following documents:

• The user guide (it's this document)

• The Javadoc of the XINS.

• The XINS primer. The primer is a description step by step on how to create your first API.

• HTML Logdoc. This document contains a description of the message logged by XINS.

• The XINS protocol. This document explains the communication protocol for the REST calling
convention.

http://xins.sourceforge.net/articles/performance.html
http://xins.sourceforge.net/articles/performance.html
http://xins.sourceforge.net/articles/performance.html

XINS User Guide

55

On the website http://www.xins.org/documentation.html, the following extra documentation is available

• A document to help you migrate API written for XINS 2.3 or lower to XINS 3.0.

• Articles over Asynchronious calls [http://xins.sourceforge.net/articles/asynchronous.html], Result
caching [http://xins.sourceforge.net/articles/resultcaching.html], API implementation with scripting
languages [http://xins.sourceforge.net/articles/scripting.html] and XINS performance [http://
xins.sourceforge.net/articles/performance.html].

• Presentations of XINS for managements [http://xins.sourceforge.net/presentations/xins_intro.pdf] and
developers [http://xins.sourceforge.net/presentations/frameworks_and_xins.pdf].

Examples
Three API examples are distributed with XINS. The API's are located in the directory demo\xins-
project.

Here is a description of the API's:

• myproject: This example is a very basic example, much like a "Hello World" example.

• allinone: This example uses most of the features including in XINS. The API contains 1 new feature
per function.

• filteredproject: This example is an API that uses the generated CAPI to call another API (the
myproject API).

The examples also include client examples. This shows how to call an API using different programming
languages.

The most interesting examples are the Ajax [http://en.wikipedia.org/wiki/Ajax_%28programming%29]
examples located in the directory demo\capis\javascript. These examples show how to call a
XINS API synchroniously or asynchroniously with Javascript and insert the result in the current HTML
page. XINS works particularly well with Ajax thanks to the REST calling convention and the XSLT calling
convention.

Here is a description of the Ajax examples:

• callMyFunction.html calls the XINS API using the REST calling convention and insert the result
of the call in the web page.

• callMetaFunction.html calls the XINS API using the XSLT calling convention and insert the
HTML returned by the call in the web page.

• callMyFunction2.html calls the XINS API using the REST calling convention and tranform the
returned result using XSLT on the client side. It then inserts the HTML in the web page.

Note

Because of security issues, when these examples are executed locally using Netscape as browser,
callMyFunction.html will ask for authorisation, callMetaFunction.html will fail
and callMyFunction2.html will fail.

XINS also contain examples on how to call an API using PHP version 4 and 5, Perl and Java. If you want
to call a XINS API using another language, just call the API using the URL and parse the returned XML.
You can also use the SOAP calling convention or the XML-RPC calling convention.

http://www.xins.org/documentation.html
http://xins.sourceforge.net/articles/asynchronous.html
http://xins.sourceforge.net/articles/asynchronous.html
http://xins.sourceforge.net/articles/resultcaching.html
http://xins.sourceforge.net/articles/resultcaching.html
http://xins.sourceforge.net/articles/resultcaching.html
http://xins.sourceforge.net/articles/scripting.html
http://xins.sourceforge.net/articles/scripting.html
http://xins.sourceforge.net/articles/scripting.html
http://xins.sourceforge.net/articles/performance.html
http://xins.sourceforge.net/articles/performance.html
http://xins.sourceforge.net/articles/performance.html
http://xins.sourceforge.net/presentations/xins_intro.pdf
http://xins.sourceforge.net/presentations/xins_intro.pdf
http://xins.sourceforge.net/presentations/frameworks_and_xins.pdf
http://xins.sourceforge.net/presentations/frameworks_and_xins.pdf
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://en.wikipedia.org/wiki/Ajax_%28programming%29

XINS User Guide

56

Program
The package not only contains the documentation and the examples, it contains also the program :-).

The program is located in different directories:

• bin contains the shell scripts. This directory should be in you PATH environment variable.

• build contains the XINS library.

• lib contains the third party libaries used by XINS with their license.

• src contains XINS source code as well as the XSLT, XML and css files used for the code generation.

A Ant build.xml script is provided in the root directory in the case you want to recompile XINS.

Integration with IDE
This chapter will help you to configure a development environment so that you can create, develop, test
and debug a project faster.

If you have found some more settings that helped you to develop the XINS API faster using Eclipse, send
the procedure to anthony.goubard@japplis.com [mailto:anthony.goubard@japplis.com].

Integration with Eclipse.
The Eclipse version used for this manual is 3.2 and can be found at http://www.eclipse.org/platform.

Note

As described in the install section, if you're using the Ant distribution included with Eclipse, you
may need to copy xercesImpl-2.6.2.jar [http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/
xercesImpl/2.6.2/xercesImpl-2.6.2.jar] to the plugins\org.apache.ant_1.6.5\lib
directory to avoid putDocumentInCache error messages. If you still have the error, install Ant and
go to Window -> Preferences -> Ant -> Runtime -> Ant Home... and choose the Ant directory.

As Eclipse locks the opened files, you choose close them before calling the create-xxx targets.
For example xins-projects.xml should be closed before calling create-api.

xins eclipse

• If the xins-project.xml is not already created, create it in a new directory with the content specified in
the section called “xins-project.xml”.

• In Run -> External Tools -> External Tools, create a new program with the name xins, the location
set to the xins\bin\xins.bat file and the working directory to the directory containing xins-
projects.xml. Then you need to add in the arguments the ${string_prompt} variable and add
in environment the variable XINS_HOME with the value of the XINS directory.

• If the API is not created, click on the run button and enter create-api. This target will ask a series
of question in order to create the API including the first function of the API.

• Click on the run button and enter eclipse. Enter the name of the API.

• The command will create a xins-eclipse.userlibraries in the xins\src\tools
\eclipse directory. Then go to Window -> Preferences -> Java -> Build Path -> User Libraries -

mailto:anthony.goubard@japplis.com
mailto:anthony.goubard@japplis.com
http://www.eclipse.org/platform
http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/xercesImpl/2.6.2/xercesImpl-2.6.2.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/xercesImpl/2.6.2/xercesImpl-2.6.2.jar
http://mirrors.ibiblio.org/pub/mirrors/maven2/xerces/xercesImpl/2.6.2/xercesImpl-2.6.2.jar

XINS User Guide

57

> Import... -> Browse and select the xins-eclipse.userlibraries file. This step only needs
to be done once.

• After the eclipse command, depending on the directory location of the api:

• If your project is outside your workspace, choose File -> New -> Project... -> Java -> Java Project ->
fill the project name -> Create project from existing source and choose the apis\<api name> directory
-> Finish.

• If your project is in your workspace, choose File -> Import... -> General -> Existing Projects into
Workspace -> Next -> choose the apis\<api name> directory -> Finnish.

Run it with Tomcat plug-in.

In order to be able to run and debug your web application, you'll need to install Tomcat
(http://jakarta.apache.org/tomcat/) and the Tomcat plug-in for Eclipse (http://www.sysdeo.com/eclipse/
tomcatplugin).

Configure the Tomcat plug-in in the Preferences:

• Set the Tomcat home to the location where you have installed Tomcat

• Add, in the JVM settings, the JVM parameter -Dorg.xins.server.config=c:\java
\tomcat\conf\xins.properties (the xins.properties could also be in another
directory). For more details about the xins.properties, read the section called “The runtime
properties”.

• Change the Configuration file to apis\<api name>\tomcat-server.xml.

• Start Tomcat.

Run it and debug it with Jetty plug-in.

You can also use the Jetty plug-in for Eclipse. To install it, go to Help -> Software Updates -> Find and
Install... -> Search for new features to install -> Add Update Site. Then enter the name JettyLauncher and
the URL http://jettylauncher.sourceforge.net/updates/.

• Create an Jetty XML file to link a directory to the build/webapps/<api>/<api>.war file.

• Go to Run -> Run...

• Create a new Jetty Web project

• Set a name for the project, set the Jetty home

• Click on Use a Jetty configuration file and set the value to the Jetty XML file you've created

• Go to the argument tab and add the parameter -Dorg.xins.server.config=<jetty_home>
\etc\xins.properties.

• Now you can run, add breakpoints and debug your web application using the buttons on the toolbar

Other improvements.

With Eclipse, by changing the code and saving it you can run your modification without recompiling if
the modification is minimal. If you modified a lot of code, you will need to regenerate the war file.

http://jakarta.apache.org/tomcat/
http://www.sysdeo.com/eclipse/tomcatplugin
http://www.sysdeo.com/eclipse/tomcatplugin
http://jettylauncher.sourceforge.net/updates/

XINS User Guide

58

If you have also generated the specific documentation you may want to use the test forms or the example
to test your project. To do so, create a new External tool named specdocs with the main program linked to
your HTML Browser and the arguments set to build\specdocs\<api>\index.html file.

In order to be able to edit the specifications that are in XML, we also advise that you install a
XML plug-in for eclipse such as XMLBuddy (http://www.xmlbuddy.com/) or XML Author (http://
www.svcdelivery.com/xmlauthor/). Then in Preferences -> Workbench -> File Associations, add *.fnc,
*.typ and *.rcd associated with the XML tool.

If you execute the clean target, you may have afterwards a window popping up asking you to choose
between build.xml and build.xml (1). To remove this window go to External Tools... menu and
remove the build.xml (1) configuration.

Integration with NetBeans
The version of NetBeans used for this manual is 5.0 and can be downloaded at http://www.netbeans.org/.

Setting up the project.

An Ant script for NetBeans 5.0 or higher is provided with XINS. It requires a correctly set XINS_HOME
environment variable.

• Add the DTD catalog by clicking on the runtime tab, right click on the DTD and XML Schema Catalogs
item and add the OASIS catalog located at src\dtd\xinsCatalog.xml.

• Register some extension as XML files in Tools -> Options -> Advanced Options -> IDE
Configuration -> System -> Object Types -> XMLObjects -> Extensions
and MIME Types by adding the items fnc, typ, rcd and cat. Check also at the same time the
XML Indentation Engine settings. From NetBeans 6.5 Tools -> Options -> Miscellaneous
-> Files

• Open the project in demo\xins-project\apis\petstore.

• If the API already exists, execute the copy-nb-files target of the nbbuild.xml.

• If you want to create a new API, execute the create-api target. This target will ask a series of
question in order to create the API including the first function of the API.

• Open the project by selecting the directory of the API: <project dir>\apis\<api name>

• You can now open your function implementation file and write it's implementation in the Result
call(Request request) method.

• Click on the Compile button to compile, on the Run button to run your API, on the Debug button to
debug it or on the Apply Code Changes if you have modified the code with debugging.

• To profile the API, install NetBeans profiler (http://profiler.netbeans.org/) and execute the profile target.

In NetBeans, the targets can be executed by right-clicking on the nbbuild.xml and Run target or
by right-clicking on the project icon or by using the toolbar if your project is the main project.

In NetBeans you can set conditional breakpoints or exception breakpoints that stop the debugger whenever
an exception is thrown.

Targets to deploy your API in Tomcat are provided. You can then use the Netbeans HTTP Monitor with it.

http://www.xmlbuddy.com/
http://www.svcdelivery.com/xmlauthor/
http://www.svcdelivery.com/xmlauthor/
http://www.netbeans.org/
http://profiler.netbeans.org/

XINS User Guide

59

If NetBeans 6 has problems to recognize the Request and Result objects, you can add the option -
J-DCacheClassPath.keepJars=true in the Netbeans etc\netbeans.conf file.

Integration with other frameworks
XINS is based on several standard such as POJO, Servlet API, SOAP, REST or Ant which eases the
integration with other frameworks.

Spring framework
XINS can easily be integrated with the Spring Framework [http://www.springframework.org/].

XINS generates POJO's for requests and result on the client and server side. The classes and the methods
are public so that they can be called from another package. The generated POJO's try to follow the Java
Beans specification as much as possible.

For example, if you want to use Spring AOP transaction for a specific API, you can define as point cut all
methods starting with call in the generated CAPI class.

On the server side, XINS is a Servlet so you can use it with org.springframework.web.servlet.* [http://
www.springframework.org/docs/api/org/springframework/web/servlet/package-summary.html].

XINS also includes a Spring framework package. The package is located in
org.xins.common.spring (javadoc [javadoc/org/xins/common/spring/index.html]). This package
is adding a few convinient classes for validation, factory bean and client interceptor.

Dojo toolkit
The Dojo toolkit [http://dojotoolkit.org/] has several ways to communicate with the server.

One of it is JSON-RPC (dojo.rpc.JsonService) which is also supported by XINS on the server side with
the _xins-jsonrpc calling convention. The easiest way to use this JsonService is in combinaison
with a SMD (Simple Method Description). SMD is a file which describes the name of the methods of
the API with the expected parameters. There are two ways to get this file from XINS. Either execute the
xins smd command that will generate the file build\smd\<api name>.smd or by calling the meta
function _SMD to the API you want to invoke. An example is provided in demo\capis\javascript
\callMyFunctionDojo.html.

You can also use dojo.rpc.YahooService where calls will be received by the _xins-json calling
convention. This service is also able to read and interpret the SMD file.

Google Web Toolkit (GWT)
GWT [http://code.google.com/webtoolkit/] has mostly two ways to communicate with a
server. They first have their own RPC system [http://code.google.com/webtoolkit/documentation/
com.google.gwt.doc.DeveloperGuide.RemoteProcedureCalls.html]. GWT also facilitates the call to APIs
using the Yahoo JSON protocol which matches the _xins-json calling convention.

An example is provided at http://gwt.google.com/samples/JSON/JSON.html.

Note that XINS also supports the callback parameter which is use to indicate to the call which method
should be called with the output parameter when the response returns.

http://www.springframework.org/
http://www.springframework.org/
http://www.springframework.org/docs/api/org/springframework/web/servlet/package-summary.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/package-summary.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/package-summary.html
javadoc/org/xins/common/spring/index.html
javadoc/org/xins/common/spring/index.html
http://dojotoolkit.org/
http://dojotoolkit.org/
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/documentation/com.google.gwt.doc.DeveloperGuide.RemoteProcedureCalls.html
http://code.google.com/webtoolkit/documentation/com.google.gwt.doc.DeveloperGuide.RemoteProcedureCalls.html
http://code.google.com/webtoolkit/documentation/com.google.gwt.doc.DeveloperGuide.RemoteProcedureCalls.html
http://gwt.google.com/samples/JSON/JSON.html

XINS User Guide

60

AJAX
The others (than Dojo and GWT) AJAX frameworks are also supported.

They have different ways to call XINS. They can use the _xins-json or _xins-jsonrpc calling conventions
but also the _xins-std and parse the returned XML themselve or use the _xins-xslt calling convention in
combination with an XSLT stylesheet that transform the XML in the HTML to insert dynamiccally in
the page.

Several examples of the later are provided in the demo\capis\javascript directory.

Mule
Mule [http://mule.codehaus.org/display/MULE/Home] is the most popular open source Entreprise Service
Bus (ESB).

As XINS is a Servlet, you can register a handler on the URI (embedded Jetty), or bind through an existing
web container (servlet endpoint).

Documentation can be found in the org.mule.providers.http.jetty [http://
mule.codehaus.org/docs/apidocs/org/mule/providers/http/jetty/package-summary.html] package or in the
org.mule.providers.http.servlet [http://mule.codehaus.org/docs/apidocs/org/mule/providers/http/servlet/
package-summary.html] package.

ESB and JavaEE
Most of modern ESB support the possibility to plug JavaEE servers to it and as part of the JavaEE
specification there is the possibility to deploy and run Servlet, there shouldn't be any problem to install
XINS APIs in an ESB and/or JavaEE server.

The main problem can only be to indicate where find the runtime properties file, as it is normally done
using the org.xins.server.config system property. If you cannot set this property, you can also include the
runtime property file to use in the WAR file as WEB-INF/xins.properties. Use the <content
dir="<path>" includes="xins.properties" web-path="WEB-INF" /> element in
impl.xml file.

Orchestration is also an important feature in ESB. It can be done using WS-BPEL as XINS APIs can
communicate using SOAP with the _xins-soap calling convention. The API can also give the WSDL
file to indicate the SOAP message format with the _WSDL meta function.

Ant
XINS uses Ant to generate the different files. It is also possible to run the tests or the API with Ant targets.
The easiest way to do it is to use the xins task as described in the the section called “xins task”.

Another possibility is to look at the nbbuild.xml file included with the petstore demo and can be used for
other existing APIs or new APIs. Note that some of the targets are NetBeans specific but most of them not.

Maven
XINS also has support for Maven 2.

Each stable releases are added in the Maven 2 repository (http://www.ibiblio.org/maven/org.xins/). Note
that not only the jar files are included, the source code and the Javadoc are also included.

http://mule.codehaus.org/display/MULE/Home
http://mule.codehaus.org/display/MULE/Home
http://mule.codehaus.org/docs/apidocs/org/mule/providers/http/jetty/package-summary.html
http://mule.codehaus.org/docs/apidocs/org/mule/providers/http/jetty/package-summary.html
http://mule.codehaus.org/docs/apidocs/org/mule/providers/http/jetty/package-summary.html
http://mule.codehaus.org/docs/apidocs/org/mule/providers/http/servlet/package-summary.html
http://mule.codehaus.org/docs/apidocs/org/mule/providers/http/servlet/package-summary.html
http://mule.codehaus.org/docs/apidocs/org/mule/providers/http/servlet/package-summary.html
http://www.ibiblio.org/maven/org.xins/

XINS User Guide

61

If you want to build your API using API using Maven, you can execute xins maven command which will
create the <api name>.pom in the apis\<api name> directory. Note that the external dependencies
(other than XINS) are not included in the generated POM and you should add them manually.

Script languages (Groovy, Ruby, PHP, Perl...)
On the client side it is possible to either call the standard calling convention or use a standard protocol
such as SOAP or XML-RPC.

As the standard calling convention is simple, it should be easy to write a script that creates a URL, send
it and parses the XML response returned.

Some of the script also have libraries to call a server by using SOAP or XML-RPC. XML-RPC clients are
listed at http://www.xmlrpc.com/directory/1568/implementations.

Examples with different script are provided in the demo\capis directory.

You can also implement an API using a script language. In this case you need to use a library to pass the
input parameters to the script and get the output parameters from the script. An example is provided in
XINS using Groovy as script language in the demo\xins-project\apis\toolbox directory.

Google App Engine (work in progress)
Since XINS 2.3, a new command xins appengine allow to package the API and deploy it on the Google
App Engine [http://appengine.google.com].

You will need to specify the location of the appengine SDK with the appengine.sdk.dir property.

The Google App Engine requires a appengine-web.xml in the WEB-INF directory. If you don't have
one XINS will create one for you (in build/webapps/<api name>/war/WEB-INF). You may
need to change the application name and version (. and _ are not accepted in version). Another possibility
is to set appengine.api.name and appengine.api.version build properties.

Also as there is no runtime properties, the file specified in the org.xins.server.config build
property will be used.

http://www.xmlrpc.com/directory/1568/implementations
http://appengine.google.com
http://appengine.google.com
http://appengine.google.com

