

1

XINS

Version 4. April 2006
Ernst de Haan

A framework for
distributed applications

2

Audience

● Intended for:
– managers
– developers
– system administrators

● Experience with XINS is not required

3

Goals

Inform about:
● frameworks:

– concept
– applicability, pros/cons

● XINS:
– history
– design principles
– features
– qualification

4

Agenda

● Frameworks
● Fundamentals
● Features
● Qualification

5

Developing an application

● Where do you start?
● Requirements!

6

Application requirements

● Functional:
– driven by the project
– specific per application
– cannot be generalized, only tunneled

● Non-functional:
– typically equal for all applications

Frameworks

7

Non-functional requirements

● For example:
– packaging
– deployment
– configuration management
– monitoring
– performance statistics
– transaction logging
– error detection
– ...

Frameworks

8

Non-functional requirements

● Options:
– Rebuild every time
– Copy/paste
– Use libraries

Frameworks

9

Step 1: Libraries

● Share functionality, avoid duplication

Library
Z

Library
Y

Library
X

Library
W

Application

Frameworks

10

Limitations of libraries

● Only provide functionalities
● Glue still needed
● Libraries may overlap or even conflict
● By definition cannot solve certain issues:

– unified packaging
– unified deployment
– unified testing
– ...

Frameworks

11

Step 2: Framework

Your
application

here

Application

Frameworks

Framework

● Combine several libraries
● Add some glue and tools
● Ta-da! Unified approach

12

What is a framework?

● Functionalities + glue + tools
● No conflicts
● Unified approach to certain

non-functional requirements
● Best practices
● It guides and supports,

from start to finish
● Domain-specific

Frameworks

13

Definition

Frame'work (n) =

● a systematic approach for developing a
certain type of software applications,

● typically including:
– support programs
– code libraries

Frameworks

14

Application architecture

● Architecture borders predefined

● Frozen spots:
– define overall architecture
– static: remain same with every application

● Hot spots:
– dynamic to individual applications

Frameworks

15

Unification

Unified approach to certain non-functional
requirements, for example:

● coding
● configuration management
● logging
● testing
● monitoring
● ...

Frameworks

16

Having no framework

Frameworks

● Features set of applications differ
● Feature implementations differ
● Time needed to build features that are

required but non-functional
● Project pushes, code/test period limited
● Innovation expensive, limited
● Duplication of code (copy/paste ?)

17

Pros

Frameworks

● Quicker from idea to working code
● Extensive feature set
● Same features and behavior everywhere
● Well-tested
● Fuels innovation

(if the framework is controlled)

18

Cons

Frameworks

● Framework is domain-specific
● Enforces an approach

– process
– programming language
– packaging
– restricts use of other libraries?
– restricts use of other frameworks?

19

Agenda

● Frameworks
● Fundamentals
● Features
● Qualification

20

History

Apr

Jan

Nov

Jan

May

Nov

Apr

May

Fundamentals

: Project initiated

: Open-sourced (SourceForge)

: 1.0 (after 212 pre-releases)

: 1.1

: 1.2

: 1.3

: 1.4.0-beta3

: 1.4.0-final

2002

2003

2004

2005

 "

 "

2006

 "

21

XINS as a framework

Fundamentals

Domain:
● Distributed applications

Main constraints:
● RPC style
● HTTP
● Java

22

XINS goals

Fundamentals

● Easy to develop distributed applications
– easy to understand
– good time to market
– avoid bugs

● Easy to monitor and operate
● Consistent
● High quality
● Stable

23

Separation of concerns

Fundamentals

Separate:
● specification and implementation
● data and presentation
● logging, code and translations

24

Simplicity

● Simplicity is key

● Makes it easier to
– understand
– tune
– change

Fundamentals

25

Based on selected standards

● All definitions in XML
● All communication over HTTP
● Avoid dependency on complex standards

(e.g. SOAP)

Fundamentals

26

RPC

● Function-oriented (e.g. “GetCart”)

● Server-side:
– one XINS function

= one Java method to implement

● Client-side
– one XINS function

= one Java method to invoke

Fundamentals

27

DOD

Definition-oriented development:
● Focus on definitions, not on code
● Definitions are mandatory
● Definitions are leading
● Start with definitions before coding

Fundamentals

28

Advantages of DOD

● Easier to re-use:
– generate code
– use as run-time configuration

● Examples:
– behavior (validation, business logic, etc.)
– documentation
– tools or tool configurations (test forms, etc.)
– other kinds of definitions (WSDL, etc.)

Fundamentals

29

DOD process

Fundamentals

Write

Generate

Write definitions first

Code

From the definitions:
generate code, docs and
 test tools (automatic)

Customize the generated
example code and add

your own code

30

Example: Function definition

<function name="Hello">

 <description>Greets the indicated person.</description>

 <input>
 <param name="name" required="true">
 <description>Person to be greeted.</description>
 </param>
 </input>

 <output>
 <param name="greeting" required="true">
 <description>Greeting for the person.</description>
 </param>
 </output>

</function>

Fundamentals

31

Agenda

● Frameworks
● Fundamentals
● Features
● Qualification

32

XINS components

Libraries

Tools

Definition
formats

Application
container

RPC
protocol

Logging
technology

Features

33

Libraries

Tools

Definition
formats

Application
container

RPC
protocol

Logging
technology

Features

● Client-side 'caller'
– load-balancing
– fail-over
– logging

● Regular expressions
● XML encoding
● ...

Libraries

34

Libraries

Definition formats

Tools

Application
container

RPC
protocol

Logging
technology

Features

● Interface
– APIs, functions, types,

error codes
– parameters in/out
– validation rules

● Implementation
● Environments
● Authors
● ...

Definition
formats

35

Libraries

Tools

Tools

Definition
formats

Application
container

RPC
protocol

Logging
technology

Features

● Generate from specs:
– Server- and client-side

code
– Docs (HTML, ODF)
– Test forms
– etc.

● Build package (WAR)
● Run/test application
● ...

Tools

36

Specdocs: API index

Features

37

Specdocs: API overview

Features

38

Specdocs: Function

Features

39

Test form

Features

40

Libraries

RPC protocol

Tools

Definition
formats

Application
container

Logging
technology

Features

● “POX-RPC”
● Simple
● HTTP-based
● Browser-compatible
● Function-oriented
● Params in/out
● Error codes

– various standard codes

RPC
protocol

41

POX-RPC call

Features

GET /?_function=GetCart&cart=1563 HTTP/1.1
Host: test.rest-rpc.org
Accept: text/xml
Connection: close

HTTP/1.1 200 OK
Content-Length: 114
Content-Type: text/xml
Connection: Close

<result>
 <param name="id">10732</param>
 <param name="remainder">60.5</param>
 <data>
 <item product="8923" price="12" amount="3"/>
 <item product="2108" price="24.5" amount="1"/>
 </data>
</result>

request
response

42

Libraries

Logging technology

Tools

Definition
formats

Application
container

RPC
protocol

Features

● “Logdoc”
● Separates:

– code
– log entries
– translations
– log levels

● Docs for all log entries
● Filter any log entry

Logging
technology

43

Logdoc

Features

Log entries
(XML)

Translations
(XML)

Documentation
 (HTML)

Generated code
(Java)

 Logdoc transformation tool

 Javadoc

API docs
(HTML)

 Packager

Package
(JAR)

44

Log4J vs Logdoc: Code

Features

Log4J:
Logger log = Logger.getLogger("connect.init");
log.error(exception,
 + "Connection "
 + connID
 + " could not be created. Received error "
 + errorID
 + '.');

Logdoc:
Log.log_30012(exception, connID, errorID);

45

Example: Log definition

<log>
 <translation-bundle locale="en_US"/>

 <group id="conn" name="Connection initialization">

 <entry id="31000" level="INFO">
 <description>Connection succeeded.</description>
 <param name="id"/>
 <param name="num" nullable="false" type="int32"/>
 </entry>

 <entry id="31001" level="ERROR" exception="true">
 <description>Connection failed.</description>
 <param name="id"/>
 </entry>

 </group>
</log>

Features

46

Logging
technology

Libraries

Application container

Tools

Definition
formats

RPC
protocol

Features

● In servlet container
● Sandbox
● Runtime config
● ACLs
● Calling conventions
● Meta-functions
● Logging
● Context identifiers

Application
container

47

Validation of input

Features

Request

Check
if OK

error
if not
OK

Application

Application container

48

Validation of output

Features

Check

if OK error
if not
OK

Application

Response

Application container

49

Sandbox

Features

● Input checked against specs
– Invalid? _InvalidRequest error

● Application code is encapsulated
– Exception thrown? _InternalError error
– Invalid response? _InvalidResponse error

● Everything is logged

50

Runtime config

Features

● External to application
– tested package unchanged to production

● Text file
● Key-value pairs
● Automatically reloaded

51

Calling conventions

Features

● Abstraction of protocol
● HTTP-based
● Built-in:

– POX-RPC
– SOAP
– XML-RPC
– XSLT

● Custom:
– extend Java class: CustomCallingConvention

52

Meta-functions

Features

● _NoOp
● _GetVersion
● _GetSettings
● _GetStatistics and _ResetStatistics
● _ReloadProperties
● _CheckLinks
● _GetFunctionList
● _EnableFunction and _DisableFunction

53

Logging

Features

● Logging in application container:
– Extensive
– Completely Logdoc-based
– Transaction logging
– Fine-tuned during last 3 years

54

Example: Start-up log

Features

3200 NOTICE Bootstrapping XINS/Java Server Framework 1.4.0-beta3-dev. Servlet
container: "Orion/2.0.3". JVM: "Sun Microsystems Inc. Java HotSpot(TM) Client VM
1.5.0_06-b05". OS: "Linux 2.6.12-gentoo-r9/i386".

3227 WARN XINS/Java Server Framework 1.4.0-beta3-dev is not a production release.

3212 INFO Package for "allinone" API, version "1.6", was built on zaphod at
2006.04.06 14:58:04.891, using XINS 1.4.0-beta3-dev.

3228 WARN Package was built with XINS 1.4.0-beta3-dev, which is not a production
release.

3245 INFO Default calling convention is "_xins-soap".

3225 INFO XINS/Java Server Framework 1.4.0-beta3-dev is bootstrapped.

3405 INFO Initializing API.

3429 INFO Access rule 0 is "allow 127.0.0.1/24 *".

3429 INFO Access rule 1 is "allow 10.0.0.0/24 *".

3427 INFO Successfully loaded access rule list with 2 rule(s).

3406 INFO Initialized API.

3441 INFO XSLT template cache in the XSLT calling convention is disabled.

55

Transaction logging

Features

● Logs every incoming request
– Timestamp
– Source IP
– Function name
– Performance
– Result code (0 for success)

● Choose:
– 3540: with params in/out
– 3541: without

56

3521 INFO Received HTTP GET request from 194.134.168.69, path is "/", query
string is "_function=_GetVersion&_convention=_xins-std".

3552 DEBUG Request from 194.134.168.69 to function _GetVersion does not match
access rule 0 ("allow 127.0.0.1/24 *").

3552 DEBUG Request from 194.134.168.69 to function _GetVersion does not match
access rule 1 ("allow 10.0.0.0/24 *").

3550 DEBUG Allowing call from 194.134.168.69 to function _GetVersion. Request
matches access rule 2 ("allow 194.134.168.69/32 *").

3540 INFO 20060407-135658472 194.134.168.69 _GetVersion 1 0
java.version=1.5.0_06&xins.version=1.4.0-beta3-dev&api.version=1.6

3541 INFO 20060407-135658472 194.134.168.69 _GetVersion 1 0

Example: Transaction log

Features

57

3521 INFO Received HTTP GET request from 194.134.168.69, path is "/", query
string is "_function=_GetVersion&_convention=_xins-std".

3552 DEBUG Request from 194.134.168.69 to function _GetVersion does not match
access rule 0 ("allow 127.0.0.1/24 *").

3552 DEBUG Request from 194.134.168.69 to function _GetVersion does not match
access rule 1 ("allow 10.0.0.0/24 *").

3550 DEBUG Allowing call from 194.134.168.69 to function _GetVersion. Request
matches access rule 2 ("allow 194.134.168.69/32 *").

3540 INFO 20060407-135658472 194.134.168.69 _GetVersion 1 0
java.version=1.5.0_06&xins.version=1.4.0-beta3-dev&api.version=1.6

3541 INFO 20060407-135658472 194.134.168.69 _GetVersion 1 0

Example: Transaction log

Features

Logdoc
message

ID

Log
level

Time-
stamp

Source
IP

Function Performance
in ms

Result
code

58

Context identifiers

Features

● For diagnosing issues across systems
● Front system generates ID
● ID is passed to all underlying systems
● Systems log ID with selected messages

59

Example: Context identifier

Features

strop@dog.company.nu:060410-132419876:b4611

application
name

machine
name

time-
stamp

random
number

60

Agenda

● Frameworks
● Fundamentals
● Features
● Qualification

61

Java and XSLT files

History and qualification

XINS 1.0 XINS 1.1 XINS 1.2 XINS 1.3 XINS 1.4

100

200

300

189

206

227

255

271

62

Unit tests

History and qualification

XINS 1.0 XINS 1.1 XINS 1.2 XINS 1.3 XINS 1.4

100

200

300

87

131

175

268

309

63

Relative: Unit tests per file

History and qualification

XINS 1.0 XINS 1.1 XINS 1.2 XINS 1.3 XINS 1.4

0,46

0,64

0,77

1,05

1,14

64

Release process

History and qualification

Before a final release (e.g. 1.4.0):
● Alpha releases:

– Implementation of critical new features
● Beta releases:

– Testing, documentation, profiling/tuning
● Release candidates:

– Cool-off period, only bug fixes
– Testing on various architectures

65

Testing

History and qualification

● Automatic: 309 unit tests (1.4.0-beta3)
● Various manual tests

● Java: 1.3, 1.4, 1.5, 1.6 EA
● JDK: IBM, Sun
● OS: Solaris, Linux, Win2000, WinXP
● Arch: SPARC, Intel

66

Conclusion

Qualification

XINS:
● framework for distributed applications
● high-quality, mature
● easy and feature-rich

for both Dev and Ops
● actively maintained and supported

67

XINS

Version 4. April 2006
Ernst de Haan

A framework for
distributed applications

