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XINS

Version 4. April 2006
Ernst de Haan

A framework for
distributed applications
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Audience

● Intended for:
– managers
– developers
– system administrators

● Experience with XINS is not required
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Goals

Inform about:
● frameworks:

– concept
– applicability, pros/cons

● XINS:
– history
– design principles
– features
– qualification
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Agenda

● Frameworks
● Fundamentals
● Features
● Qualification
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Developing an application

● Where do you start?
● Requirements!
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Application requirements

● Functional:
– driven by the project
– specific per application
– cannot be generalized, only tunneled

● Non-functional:
– typically equal for all applications

Frameworks
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Non-functional requirements

● For example:
– packaging
– deployment
– configuration management
– monitoring
– performance statistics
– transaction logging
– error detection
– ...

Frameworks
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Non-functional requirements

● Options:
– Rebuild every time
– Copy/paste
– Use libraries

Frameworks
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Step 1: Libraries

● Share functionality, avoid duplication

Library
Z

Library
Y

Library
X

Library
W

Application

Frameworks
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Limitations of libraries

● Only provide functionalities
● Glue still needed
● Libraries may overlap or even conflict
● By definition cannot solve certain issues:

– unified packaging
– unified deployment
– unified testing
– ...

Frameworks
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Step 2: Framework

Your
application

here

Application

Frameworks

Framework

● Combine several libraries
● Add some glue and tools
● Ta-da! Unified approach
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What is a framework?

● Functionalities + glue + tools
● No conflicts
● Unified approach to certain

non-functional requirements
● Best practices
● It guides and supports,

from start to finish
● Domain-specific

Frameworks
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Definition

Frame'work (n) =

● a systematic approach for developing a 
certain type of software applications,

● typically including:
– support programs
– code libraries

Frameworks
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Application architecture

● Architecture borders predefined

● Frozen spots:
– define overall architecture
– static: remain same with every application

● Hot spots:
– dynamic to individual applications

Frameworks
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Unification

Unified approach to certain non-functional 
requirements, for example:

● coding
● configuration management
● logging
● testing
● monitoring
● ...

Frameworks
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Having no framework

Frameworks

● Features set of applications differ
● Feature implementations differ
● Time needed to build features that are 

required but non-functional
● Project pushes, code/test period limited
● Innovation expensive, limited
● Duplication of code (copy/paste ?)
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Pros

Frameworks

● Quicker from idea to working code
● Extensive feature set
● Same features and behavior everywhere
● Well-tested
● Fuels innovation

(if the framework is controlled)
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Cons

Frameworks

● Framework is domain-specific
● Enforces an approach

– process
– programming language
– packaging
– restricts use of other libraries?
– restricts use of other frameworks?
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Agenda

● Frameworks
● Fundamentals
● Features
● Qualification
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History

Apr

Jan

Nov

Jan

May

Nov

Apr

May

Fundamentals

: Project initiated

: Open-sourced (SourceForge)

: 1.0 (after 212 pre-releases)

: 1.1

: 1.2

: 1.3

: 1.4.0-beta3

: 1.4.0-final

2002

2003

2004

2005

   "

   "

2006

   "
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XINS as a framework

Fundamentals

Domain:
● Distributed applications

Main constraints:
● RPC style
● HTTP
● Java
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XINS goals

Fundamentals

● Easy to develop distributed applications
– easy to understand
– good time to market
– avoid bugs

● Easy to monitor and operate
● Consistent
● High quality
● Stable
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Separation of concerns

Fundamentals

Separate:
● specification and implementation
● data and presentation
● logging, code and translations
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Simplicity

● Simplicity is key

● Makes it easier to
– understand
– tune
– change

Fundamentals
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Based on selected standards

● All definitions in XML
● All communication over HTTP
● Avoid dependency on complex standards 

(e.g. SOAP)

Fundamentals
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RPC

● Function-oriented (e.g. “GetCart”)

● Server-side:
– one XINS function

= one Java method to implement

● Client-side
– one XINS function

= one Java method to invoke

Fundamentals
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DOD

Definition-oriented development:
● Focus on definitions, not on code
● Definitions are mandatory
● Definitions are leading
● Start with definitions before coding

Fundamentals
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Advantages of DOD

● Easier to re-use:
– generate code
– use as run-time configuration

● Examples:
– behavior (validation, business logic, etc.)
– documentation
– tools or tool configurations (test forms, etc.)
– other kinds of definitions (WSDL, etc.)

Fundamentals
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DOD process

Fundamentals

Write

Generate

Write definitions first

Code

From the definitions:
generate code, docs and
 test tools (automatic)

Customize the generated
example code and add

your own code
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Example: Function definition

<function name="Hello">

  <description>Greets the indicated person.</description>

  <input>
    <param name="name" required="true">
      <description>Person to be greeted.</description>
    </param>
  </input>

  <output>
    <param name="greeting" required="true">
      <description>Greeting for the person.</description>
    </param>
  </output>

</function>

Fundamentals
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Agenda

● Frameworks
● Fundamentals
● Features
● Qualification
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XINS components

Libraries

Tools

Definition
formats

Application
container

RPC
protocol

Logging
technology

Features
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Libraries

Tools

Definition
formats

Application
container

RPC
protocol

Logging
technology

Features

● Client-side 'caller'
– load-balancing
– fail-over
– logging

● Regular expressions
● XML encoding
● ...

Libraries
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Libraries

Definition formats

Tools

Application
container

RPC
protocol

Logging
technology

Features

● Interface
– APIs, functions, types, 

error codes
– parameters in/out
– validation rules

● Implementation
● Environments
● Authors
● ...

Definition
formats
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Libraries

Tools

Tools

Definition
formats

Application
container

RPC
protocol

Logging
technology

Features

● Generate from specs:
– Server- and client-side 

code
– Docs (HTML, ODF)
– Test forms
– etc.

● Build package (WAR)
● Run/test application
● ...

Tools
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Specdocs: API index

Features
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Specdocs: API overview

Features
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Specdocs: Function

Features



 
 

39

Test form

Features
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Libraries

RPC protocol

Tools

Definition
formats

Application
container

Logging
technology

Features

● “POX-RPC”
● Simple
● HTTP-based
● Browser-compatible
● Function-oriented
● Params in/out
● Error codes

– various standard codes

RPC
protocol
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POX-RPC call

Features

GET /?_function=GetCart&cart=1563 HTTP/1.1
Host: test.rest-rpc.org
Accept: text/xml
Connection: close

HTTP/1.1 200 OK
Content-Length: 114
Content-Type: text/xml
Connection: Close

<result>
   <param name="id">10732</param>
   <param name="remainder">60.5</param>
   <data>
      <item product="8923" price="12" amount="3"/>
      <item product="2108" price="24.5" amount="1"/>
   </data>
</result>

request
response
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Libraries

Logging technology

Tools

Definition
formats

Application
container

RPC
protocol

Features

● “Logdoc”
● Separates:

– code
– log entries
– translations
– log levels

● Docs for all log entries
● Filter any log entry

Logging
technology
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Logdoc

Features

Log entries
(XML)

Translations
(XML)

Documentation
 (HTML)

Generated code
(Java)

            Logdoc transformation tool

        Javadoc

API docs
(HTML)

        Packager

Package
(JAR)
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Log4J vs Logdoc: Code

Features

Log4J:
Logger log = Logger.getLogger("connect.init");
log.error(exception,
     + "Connection "
     + connID
     + " could not be created. Received error "
     + errorID
     + '.');

Logdoc:
Log.log_30012(exception, connID, errorID);
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Example: Log definition

<log>
  <translation-bundle locale="en_US"/>

  <group id="conn" name="Connection initialization">

    <entry id="31000" level="INFO">
      <description>Connection succeeded.</description>
      <param name="id"/>
      <param name="num" nullable="false" type="int32"/>
    </entry>

    <entry id="31001" level="ERROR" exception="true">
      <description>Connection failed.</description>
      <param name="id"/>
    </entry>

  </group>
</log>

Features
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Logging
technology

Libraries

Application container

Tools

Definition
formats

RPC
protocol

Features

● In servlet container
● Sandbox
● Runtime config
● ACLs
● Calling conventions
● Meta-functions
● Logging
● Context identifiers

Application
container
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Validation of input

Features

Request

Check
if OK

error
if not
OK

Application

Application container
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Validation of output

Features

Check

if OK error
if not
OK

Application

Response

Application container
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Sandbox

Features

● Input checked against specs
– Invalid?      _InvalidRequest error

● Application code is encapsulated
– Exception thrown?     _InternalError error
– Invalid response?      _InvalidResponse error

● Everything is logged
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Runtime config

Features

● External to application
– tested package unchanged to production

● Text file
● Key-value pairs
● Automatically reloaded
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Calling conventions

Features

● Abstraction of protocol
● HTTP-based
● Built-in:

– POX-RPC
– SOAP
– XML-RPC
– XSLT

● Custom:
– extend Java class: CustomCallingConvention
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Meta-functions

Features

● _NoOp
● _GetVersion
● _GetSettings
● _GetStatistics and _ResetStatistics
● _ReloadProperties
● _CheckLinks
● _GetFunctionList
● _EnableFunction and _DisableFunction
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Logging

Features

● Logging in application container:
– Extensive
– Completely Logdoc-based
– Transaction logging
– Fine-tuned during last 3 years
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Example: Start-up log

Features

3200 NOTICE Bootstrapping XINS/Java Server Framework 1.4.0-beta3-dev. Servlet 
container: "Orion/2.0.3". JVM: "Sun Microsystems Inc. Java HotSpot(TM) Client VM 
1.5.0_06-b05". OS: "Linux 2.6.12-gentoo-r9/i386".

3227 WARN   XINS/Java Server Framework 1.4.0-beta3-dev is not a production release.

3212 INFO   Package for "allinone" API, version "1.6", was built on zaphod at 
2006.04.06 14:58:04.891, using XINS 1.4.0-beta3-dev.

3228 WARN   Package was built with XINS 1.4.0-beta3-dev, which is not a production 
release.

3245 INFO   Default calling convention is "_xins-soap".

3225 INFO   XINS/Java Server Framework 1.4.0-beta3-dev is bootstrapped.

3405 INFO   Initializing API.

3429 INFO   Access rule 0 is "allow 127.0.0.1/24 *".

3429 INFO   Access rule 1 is "allow 10.0.0.0/24 *".

3427 INFO   Successfully loaded access rule list with 2 rule(s).

3406 INFO   Initialized API.

3441 INFO   XSLT template cache in the XSLT calling convention is disabled.
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Transaction logging

Features

● Logs every incoming request
– Timestamp
– Source IP
– Function name
– Performance
– Result code (0 for success)

● Choose:
– 3540: with params in/out
– 3541: without
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3521 INFO   Received HTTP GET request from 194.134.168.69, path is "/", query 
string is "_function=_GetVersion&_convention=_xins-std".

3552 DEBUG  Request from 194.134.168.69 to function _GetVersion does not match 
access rule 0 ("allow 127.0.0.1/24 *").

3552 DEBUG  Request from 194.134.168.69 to function _GetVersion does not match 
access rule 1 ("allow 10.0.0.0/24 *").

3550 DEBUG  Allowing call from 194.134.168.69 to function _GetVersion. Request 
matches access rule 2 ("allow 194.134.168.69/32 *").

3540 INFO   20060407-135658472 194.134.168.69 _GetVersion 1 0  
java.version=1.5.0_06&xins.version=1.4.0-beta3-dev&api.version=1.6

3541 INFO   20060407-135658472 194.134.168.69 _GetVersion 1 0

Example: Transaction log

Features
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3521 INFO   Received HTTP GET request from 194.134.168.69, path is "/", query 
string is "_function=_GetVersion&_convention=_xins-std".

3552 DEBUG  Request from 194.134.168.69 to function _GetVersion does not match 
access rule 0 ("allow 127.0.0.1/24 *").

3552 DEBUG  Request from 194.134.168.69 to function _GetVersion does not match 
access rule 1 ("allow 10.0.0.0/24 *").

3550 DEBUG  Allowing call from 194.134.168.69 to function _GetVersion. Request 
matches access rule 2 ("allow 194.134.168.69/32 *").

3540 INFO   20060407-135658472 194.134.168.69 _GetVersion 1 0  
java.version=1.5.0_06&xins.version=1.4.0-beta3-dev&api.version=1.6

3541 INFO   20060407-135658472 194.134.168.69 _GetVersion 1 0

Example: Transaction log

Features

Logdoc
message

ID

Log
level

Time-
stamp

Source
IP

Function Performance
in ms

Result
code
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Context identifiers

Features

● For diagnosing issues across systems
● Front system generates ID
● ID is passed to all underlying systems
● Systems log ID with selected messages



 
 

59

Example: Context identifier

Features

strop@dog.company.nu:060410-132419876:b4611

application
name

machine
name

time-
stamp

random
number
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Agenda

● Frameworks
● Fundamentals
● Features
● Qualification
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Java and XSLT files

History and qualification

XINS 1.0 XINS 1.1 XINS 1.2 XINS 1.3 XINS 1.4

100

200

300

189

206

227

255

271
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Unit tests

History and qualification

XINS 1.0 XINS 1.1 XINS 1.2 XINS 1.3 XINS 1.4

100

200

300

87

131

175

268

309
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Relative: Unit tests per file

History and qualification

XINS 1.0 XINS 1.1 XINS 1.2 XINS 1.3 XINS 1.4

0,46

0,64

0,77

1,05

1,14
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Release process

History and qualification

Before a final release (e.g. 1.4.0):
● Alpha releases:

– Implementation of critical new features
● Beta releases:

– Testing, documentation, profiling/tuning
● Release candidates:

– Cool-off period, only bug fixes
– Testing on various architectures
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Testing

History and qualification

● Automatic: 309 unit tests (1.4.0-beta3)
● Various manual tests

● Java: 1.3, 1.4, 1.5, 1.6 EA
● JDK: IBM, Sun
● OS: Solaris, Linux, Win2000, WinXP
● Arch: SPARC, Intel
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Conclusion

Qualification

XINS:
● framework for distributed applications
● high-quality, mature
● easy and feature-rich

for both Dev and Ops
● actively maintained and supported
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XINS

Version 4. April 2006
Ernst de Haan

A framework for
distributed applications


